Wearable On-Demand Oxygen Therapy

Author(s):  
Chandan Hebbale ◽  
Katherine Fu

Oxygen concentration devices currently on the market have many shortcomings. They are bulky and difficult to carry. They alter a patient’s outward image with a visual mark of disability. They do not change oxygen delivery in any way to adjust to the patient’s health. They also lack indicators to help the patient decide when to begin or end a therapy session. Some patient’s decide not to take oxygen therapy as a result of these shortcomings. Those that use these devices may receive over oxygenation or under oxygenation due to the mentioned pitfalls. Any of the shortcomings described can be life threatening to the patient. The present innovation is a proposed system for oxygen delivery that adjusts flowrate based on the patient health and requires no user input to begin or end a therapy session. This paper presents a unique wearable device design for delivering oxygen in a pressure based concentration system.

2016 ◽  
Vol 42 (2-3) ◽  
pp. 429-450 ◽  
Author(s):  
Thomas J. Hwang ◽  
Aaron S. Kesselheim

Accelerating the development and approval of novel therapeutics has emerged as a key public health priority given the mortality, morbidity, and economic costs associated with infections caused by drug-resistant bacteria. However, there is limited empirical evidence to guide policymaking, such as the factors that may disadvantage antibiotics compared to other classes of drugs. In this Article, we empirically examine characteristics of the key clinical trials underpinning FDA's approval of antibiotics and other drugs over the past decade. Despite perceptions that antibiotic trials are larger and more difficult to conduct, we find that antibiotic trials are no larger than those conducted for drugs approved in other disease areas with high unmet medical needs, suggesting that policymakers may need to target other levers to meaningfully stimulate innovation. We discuss the risks and benefits of harnessing new and existing regulatory pathways to speed the approval of new drugs, particularly those intended to treat patients with serious and life-threatening infections, and we evaluate ways that proposals for new regulatory pathways could be improved to better prioritize and expedite the approval of therapies with the greatest potential for patient health benefits.


2010 ◽  
Vol 4 (2) ◽  
Author(s):  
Thao P. Do ◽  
Lindsey J. Eubank ◽  
Devin S. Coulter ◽  
John M. Freihaut ◽  
Carlos E. Guevara ◽  
...  

When an infant is born prematurely, there are a number of health risks. Among these are underdeveloped lungs, which can lead to abnormal gas exchange of oxygen or hypoxemia. Hypoxemia is treated through oxygen therapy, which involves the delivery of supplemental oxygen to the patient but there are risks associated with this method. Risks include retinopathy, which can cause eye damage when oxygen concentration is too high, and brain damage, when the concentration is too low [1]. Supplemental oxygen concentration must be controlled rigorously. Currently healthcare staff monitors infants’ blood oxygen saturation level using a pulse oximeter. They manually adjust the oxygen concentration using an air-oxygen blender. Inconsistent manual adjustments can produce excessive fluctuations and cause the actual oxygen saturation level to deviate from the target value. Precision and accuracy are compromised. This project develops an automatic oxygen delivery system that regulates the supplemental oxygen concentration to obtain a target blood oxygen saturation level. A microprocessor uses a LABVIEW® program to analyze pulse oximeter and analyzer readings and control electronic valves in a redesigned air-oxygen blender. A user panel receives a target saturation level, displays patient data, and signals alarms when necessary. The prototype construction and testing began February 2010.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Wanru Geng ◽  
Wuliji Batu ◽  
Shuhong You ◽  
Zhaohui Tong ◽  
Hangyong He

Severe bronchial asthma complicated with respiratory failure, a common critical illness in respiratory medicine, may be life-threatening. High-flow nasal cannula (HFNC) is a novel oxygen therapy technique developed in recent years. HFNC was applied in this study for treating adult patients with severe bronchial asthma complicated with respiratory failure. Its efficacy was analyzed comparatively to conventional oxygen therapy (COT). HFNC and COT were randomly performed based on conventional treatment. The HFNC group was similar to COT-treated patients in terms of response rate, with no significant difference in efficacy between the two groups. In patients with bronchial asthma, effectively increased PO2 and reduced PCO2 were observed after treatment in both groups. However, HFNC was more efficient than COT in elevating PO2 in patients with severe bronchial asthma complicated with respiratory failure, while no statistically significant difference in PCO2 reduction was found between the two groups. Heart rate (HR) and respiratory rate (RR) between the two groups on admission (0 h) and at 2, 8, 24, and 48 h after admission were compared. Both indicators significantly decreased with time. No significant differences in HR and RR were found between the groups at 0, 2, and 8 h after admission. However, these indicators were significantly lower in the HFNC group compared with the COT group at 24 and 48 h after admission. HFNC could significantly elevate PO2 and reduce HR and RR. Thus, it is a promising option for patients with severe bronchial asthma complicated with respiratory failure.


Author(s):  
Sara Goering ◽  
Eran Klein

Neurotechnologies under development are often explicitly justified in terms of the advantages they will provide to disabled people. Thus, it would seem important to know what disabled people want from current and future iterations of these technologies and how they experience the functional barriers the technologies are meant to address. Ensuring that disabled people want what is designed requires attention to “end user” needs and values. The paradigmatic form of end user input in device design focuses on device acceptability, usually happens late in the development process, and is oriented to economic viability. But seeking out and taking seriously the perspectives of disabled people (potential end users) should be grounded at least in part by considerations of justice, including both distribution and recognition.


CHEST Journal ◽  
1985 ◽  
Vol 87 (5) ◽  
pp. 636-638 ◽  
Author(s):  
Brian L. Tiep ◽  
M. Brooke Nicotra ◽  
Rick Carter ◽  
Robert Phillips ◽  
Ben Otsap

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jingen Xia ◽  
Jiaqi Chang ◽  
Jixiang Liang ◽  
Yixuan Wang ◽  
Na Wang

The mechanical ventilation of human body is a complex human-computer interaction process. High flow nasal cannula oxygen therapy (HFNC) is a new type of ventilation, which is often measured by lung pressure, respiratory work, and other parameters. The purpose of this paper is to analyse the pressure, flow, and strain rate of upper respiratory tract with different flow and oxygen concentration by using finite element simulation, to guide professionals to adjust the appropriate flow and oxygen concentration parameters of HFNC machine. This paper studies the complex human-computer interaction environment of human respiratory tract and ventilation airflow. The 3D model of respiratory tract established by the conversion of image scanning data was taken as the research object. The flow state of the gases in the respiratory tract was judged by Reynolds equation. After that, RNG K-ε model was applied to the research object, and the simulation diagram of airway pressure, flow rate, strain rate, and trace diagram of flowing particles were obtained under the finite element method. The results explain some clinical phenomena in HFNC and guide people to make better use of mathematical tools to study human-computer complex environment.


2018 ◽  
Vol 103 (8) ◽  
pp. 1170-1177 ◽  
Author(s):  
Ryan L. Hoiland ◽  
Suzana Mladinov ◽  
Otto F. Barak ◽  
Christopher K. Willie ◽  
Tanja Mijacika ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document