Leveraging Novel and Existing Pathways to Approve New Therapeutics to Treat Serious Drug-Resistant Infections

2016 ◽  
Vol 42 (2-3) ◽  
pp. 429-450 ◽  
Author(s):  
Thomas J. Hwang ◽  
Aaron S. Kesselheim

Accelerating the development and approval of novel therapeutics has emerged as a key public health priority given the mortality, morbidity, and economic costs associated with infections caused by drug-resistant bacteria. However, there is limited empirical evidence to guide policymaking, such as the factors that may disadvantage antibiotics compared to other classes of drugs. In this Article, we empirically examine characteristics of the key clinical trials underpinning FDA's approval of antibiotics and other drugs over the past decade. Despite perceptions that antibiotic trials are larger and more difficult to conduct, we find that antibiotic trials are no larger than those conducted for drugs approved in other disease areas with high unmet medical needs, suggesting that policymakers may need to target other levers to meaningfully stimulate innovation. We discuss the risks and benefits of harnessing new and existing regulatory pathways to speed the approval of new drugs, particularly those intended to treat patients with serious and life-threatening infections, and we evaluate ways that proposals for new regulatory pathways could be improved to better prioritize and expedite the approval of therapies with the greatest potential for patient health benefits.

2012 ◽  
pp. 63-66
Author(s):  
Alan James Marsh

Imagine a world without antibiotics. A world where diseases such as syphilis, tuberculosis, meningitis were still commonplace, where a scrape on a leg could develop into life-threatening illness and the plague was still to be feared. Such was life before 1928, the year Alexander Fleming revolutionised the field of medicine by accidentally discovering penicillin, a mould which could kill bacteria. This drug became the world’s first antibiotic and it spurred scientists to discover other classes of antimicrobial compounds, which together dramatically reduced the spread of disease. However, this golden era of medicine will not last forever. After only a few years of use, disease-causing bacteria had emerged which were resistant to antibiotics. The most common of these so-called “superbugs”, methicillin-resistant Staphylococcus aureus (MRSA), is now responsible for an increasing number of deaths, and is practically untreatable. Similarly, incidents of multi- drug-resistant tuberculosis are on the rise. Other drug-resistant bacteria are ...


2019 ◽  
Vol 40 (2) ◽  
pp. 92 ◽  
Author(s):  
Mark AT Blaskovich

Australians love antibiotics, with one of the highest rates of human antibiotic usage in the world. Unfortunately, they are being loved to death, as high rates of inappropriate use, both here and around the globe, are contributing to the rise of drug-resistant bacteria against which our current arsenal of antibiotics is becoming increasingly ineffective. In the past, advancements in developing new antibiotics kept pace with developing resistance, but we are now facing a deadly reality where the pipeline of ‘new and improved' antibiotics is rapidly drying up. There are a number of global initiatives attempting to reprime the pipeline, but the exit of major pharmaceutical companies from antibiotic research and the poor financial performance of antibiotic-focused biotechnology companies continues.


Author(s):  
E.A. Martis ◽  
G M Doshi ◽  
G V Aggarwal ◽  
P P Shanbhag

With the emergence of newer diseases, resistant forms of infectious diseases and multi-drug resistant bacteria, it has become essential to develop novel and more effective antibiotics. Current antibiotics are obtained from terrestrial life or made synthetically from intermediates. The ocean represents virtually untapped resource from which novel antibiotic compounds can be discovered. It is the marine world that will provide the pharmaceutical industry with the next generation of antibiotics. Marine antibiotics are antibiotics obtained from marine organisms. Scientists have reported the discovery of various antibiotics from marine bacteria (aplasmomycin, himalomycins, and pelagiomycins), sponges (Ara C, variabillin, strobilin, ircinin-1, aeroplysin, 3,5-dibromo-4-hydroxyphenylacetamide), coelenterates (asperidol and eunicin), mollusks (laurinterol and pachydictyol), tunicates (geranylhydroquinone and cystadytins), algae (cycloeudesmol, aeroplysinin-1(+), prepacifenol and tetrabromoheptanone), worms (tholepin and 3,5-dibromo-4-hydroxybezaldehyde), and actinomycetes (marinomycins C and D). This indicates that the marine environment, representing approximately half of the global diversity, is an enormous resource for new antibiotics and this source needs to be explored for the discovery of new generation antibiotics. The present article provides an overview of various antibiotics obtained from marine sources.


Author(s):  
Daniel Berman

How can we prevent the rise of resistance to antibiotics? In this video, Daniel Berman,  Nesta Challenges, discusses the global threat of AMR and how prizes like the Longitude Prize can foster the development of rapid diagnostic tests for bacterial infections, helping to contribute towards reducing the global threat of drug resistant bacteria. Daniel outlines how accelerating the development of rapid point-of-care tests will ensure that bacterial infections are treated with the most appropriate antibiotic, at the right time and in the right healthcare setting.


Author(s):  
Ryunosuke Hakuta ◽  
Yousuke Nakai ◽  
Tsuyoshi Hamada ◽  
Yusuke Nomura ◽  
Tomotaka Saito ◽  
...  

Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 321
Author(s):  
Shekh Sabir ◽  
Tsz Tin Yu ◽  
Rajesh Kuppusamy ◽  
Basmah Almohaywi ◽  
George Iskander ◽  
...  

The quorum sensing (QS) system in multi-drug-resistant bacteria such as P. aeruginosa is primarily responsible for the development of antibiotic resistance and is considered an attractive target for antimicrobial drug discovery. In this study, we synthesised a series of novel selenourea and thiourea-containing dihydropyrrol-2-one (DHP) analogues as LasR antagonists. The selenium DHP derivatives displayed significantly better quorum-sensing inhibition (QSI) activities than the corresponding sulphur analogues. The most potent analogue 3e efficiently inhibited the las QS system by 81% at 125 µM and 53% at 31 µM. Additionally, all the compounds were screened for their minimum inhibitory concentration (MIC) against the Gram-positive bacterium S. aureus, and interestingly, only the selenium analogues showed antibacterial activity, with 3c and 3e being the most potent with a MIC of 15.6 µM.


Sign in / Sign up

Export Citation Format

Share Document