Analysis and Characterization of Piezoelectric Energy Harvesting From Galloping and Base Excitations With Complex Electrical Circuitry

Author(s):  
Hichem Abdelmoula ◽  
Abdessattar Abdelkefi

The characteristics and performance of piezoelectric energy harvesters concurrently subjected to galloping and base excitations when using a complex electrical circuit are studied. The considered energy harvester is composed of a bilayered cantilever beam with a square cylindrical structure at its tip. Euler-Bernoulli beam theory, nonlinear quasi-steady hypothesis, and Galerkin method are used to develop a reduced order model of this system. The electrical circuitry of the harvester consists of a load resistance, a capacitance, and an inductance. The impacts of the electrical components of the harvester’s circuitry, the wind speed, and the base excitation frequency and acceleration on the broadband characteristics of the harvester, quenching phenomenon, and appearance of new nonlinear behaviors are deeply investigated and discussed. When both coupled frequencies of electrical and mechanical types exists and are far from each other, it is shown that the quenching phenomenon is only related to the coupled frequency of mechanical type. Unlike the existence of the quenching phenomenon, the results show that the beating phenomenon takes place for different excitation frequencies when they are close to the coupled frequencies of electrical and mechanical types.

2018 ◽  
pp. 826-862
Author(s):  
Abdessattar Abdelkefi

There exist numerous low-frequency excitation sources, such as walking, breathing, and ocean waves, capable of providing viable amounts of mechanical energy to power many critical devices, including pacemakers, cell phones, MEMS devices, wireless sensors, and actuators. Harvesting significant energy levels from such sources can only be achieved through the design of devices capable of performing effective energy transfer mechanisms over low frequencies. In this chapter, two concepts of efficient low-frequency piezoelectric energy harvesters are presented, namely, variable-shaped piezoelectric energy harvesters and piezomagnetoelastic energy harvesters. Linear and nonlinear electromechanical models are developed and validated in this chapter. The results show that the quadratic shape can yield up to two times the energy harvested by a rectangular one. It is also demonstrated that depending on the available excitation frequency, an enhanced energy harvester can be tuned and optimized by changing the length of the piezoelectric material or by changing the distance between the two tip magnets.


2015 ◽  
Vol 23 (15) ◽  
pp. 2538-2553 ◽  
Author(s):  
Ahmed Jemai ◽  
Fehmi Najar ◽  
Moez Chafra

The use of a multilayer piezoelectric cantilever beam for vibration-based energy harvesting applications has been investigated as an effective technique to increase the harvested electrical power. It has been shown that the multilayered energy harvester performance is very sensitive to the number of layers and their electrical connection due to impedance variations. The objective of this work is to suggest a comprehensive mathematical model of multilayered unimorph piezoelectric energy harvester allowing analytical solution for the harvested voltage and electrical power. The model is used to deeply investigate the influence of different parameters on the harvested power. A distributed-parameter model of the harvester using the Euler–Bernoulli beam theory and Hamilton's principle is derived. Gauss's law is used to derive the electrical equations for parallel and series connections. A closed-form solution is proposed based on the Galerkin procedure and the obtained results are validated with a finite element 3D model. A parametric study is performed to ascertain the influence of the load resistance, the thickness ratio, the number of piezoelectric layers on the tip displacement and the electrical harvested power. It is shown that this model can be easily used to adjust the geometrical and electrical parameters of the energy harvester in order to improve the system's performances. In addition, it is proven that if one of the system's parameter is not correctly tuned, the harvested power can decrease by several orders of magnitude.


Author(s):  
Abdessattar Abdelkefi

There exist numerous low-frequency excitation sources, such as walking, breathing, and ocean waves, capable of providing viable amounts of mechanical energy to power many critical devices, including pacemakers, cell phones, MEMS devices, wireless sensors, and actuators. Harvesting significant energy levels from such sources can only be achieved through the design of devices capable of performing effective energy transfer mechanisms over low frequencies. In this chapter, two concepts of efficient low-frequency piezoelectric energy harvesters are presented, namely, variable-shaped piezoelectric energy harvesters and piezomagnetoelastic energy harvesters. Linear and nonlinear electromechanical models are developed and validated in this chapter. The results show that the quadratic shape can yield up to two times the energy harvested by a rectangular one. It is also demonstrated that depending on the available excitation frequency, an enhanced energy harvester can be tuned and optimized by changing the length of the piezoelectric material or by changing the distance between the two tip magnets.


Author(s):  
Wei-Jiun Su ◽  
Jean W. Zu

Piezoelectric material has been widely utilized in vibration-based energy harvesters (VEH). The most common configuration of piezoelectric energy harvester is a cantilevered beam with unimorph or bimorph piezoelectric layers. In this paper, a new configuration of PEH is proposed. Two beams are assembled as V shape with tip masses attached. The first beam is a cantilevered beam with tip mass while the second beam is attached to the end of the first beam with a certain angle. Piezoelectric layers are attached to both beams in unimorph configuration for power generation. The analytical solution is derived based on Euler-Bernoulli beam theory. In this analysis, the angle varies from 0 to 135 degree to see the influence of angle on voltage and power frequency response. The V-shaped VEH is proven to have the second resonant frequency relatively close to the first resonant frequency when compared with conventional cantilevered VEH. Furthermore, the angle between the two beams will influence the ratio of the second to the first resonant frequency. By choosing a suitable angle, the V-shaped structure can effectively broaden the bandwidth.


Author(s):  
Xiaokun Ma ◽  
Christopher D. Rahn

Piezoelectric energy harvesters can be used to scavenge energy for unattended sensors in heating ventilation and air conditioning (HVAC) ducts. In this paper, an aeroelastic energy harvester using a pinned-pinned beam is designed, modeled, and analyzed. To obtain the desired model, we use nonlinear Euler-Bernoulli beam theory, a linear piezoelectric constitutive law, and nonlinear pressure dynamics. Compared with the traditional cantilever beam used by previous researchers, the pinned-pinned beam has a higher frequency limit cycle and more efficient mode shape, which ensure higher power output at the same strain level. The pinned-pinned boundary condition also self-limits the response amplitude, limiting strain in the piezoelectric beam and premature failure. Simulation results show that the pinned-pinned beam can harvest at least 4 times more average power than a cantilever beam with the same maximum strain.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Anup Pydah ◽  
R. C. Batra

We present a novel beam-based vibration energy harvester, and use a structural tailoring concept to tune its natural frequencies. Using a solution of the Euler–Bernoulli beam theory equations, verified with finite element (FE) solutions of shell theory equations, we show that introducing folds or creases along the span of a slender beam, varying the fold angle at a crease, and changing the crease location helps tune the beam natural frequencies to match an external excitation frequency and maximize the energy harvested. For a beam clamped at both ends, the first frequency can be increased by 175% with a single fold. With two folds, selective frequencies can be tuned, leaving others unchanged. The number of folds, their locations, and the fold angles act as tuning parameters that provide high sensitivity and controllability of the frequency response of the harvester. The analytical model can be used to quickly optimize designs with multiple folds for anticipated external frequencies.


2021 ◽  
Vol 13 (5) ◽  
pp. 2865 ◽  
Author(s):  
Sungryong Bae ◽  
Pilkee Kim

In this study, optimization of the external load resistance of a piezoelectric bistable energy harvester was performed for primary harmonic (period-1T) and subharmonic (period-3T) interwell motions. The analytical expression of the optimal load resistance was derived, based on the spectral analyses of the interwell motions, and evaluated. The analytical results are in excellent agreement with the numerical ones. A parametric study shows that the optimal load resistance depended on the forcing frequency, but not the intensity of the ambient vibration. Additionally, it was found that the optimal resistance for the period-3T interwell motion tended to be approximately three times larger than that for the period-1T interwell motion, which means that the optimal resistance was directly affected by the oscillation frequency (or oscillation period) of the motion rather than the forcing frequency. For broadband energy harvesting applications, the subharmonic interwell motion is also useful, in addition to the primary harmonic interwell motion. In designing such piezoelectric bistable energy harvesters, the frequency dependency of the optimal load resistance should be considered properly depending on ambient vibrations.


Author(s):  
Amin Bibo ◽  
Abdessattar Abdelkefi ◽  
Mohammed F. Daqaq

This paper develops an experimentally validated model of a piezoelectric energy harvester under combined aeroelastic-galloping and base excitations. To that end, an energy harvester consisting of a thin piezoelectric cantilever beam subjected to vibratory base excitation is considered. To permit galloping excitation, a bluff body is rigidly attached at the free end such that a net aerodynamic lift is generated as the incoming airflow separates on both sides of the body giving rise to limit cycle oscillations when the flow velocity exceeds a critical value. A nonlinear electromechanical distributed-parameter model of the harvester under the combined excitation is derived using the energy approach and by adopting the nonlinear Euler-Bernoulli beam theory, linear constitutive relations for the piezoelectric transduction, and the quasi-steady assumption for the aerodynamic loading. The partial differential equations of the system are discretized and a reduced-order-model is obtained. The mathematical model is validated by conducting a series of experiments with different loading conditions represented by wind speed, base excitation amplitude, and excitation frequency around the primary resonance.


Author(s):  
Wei-Jiun Su ◽  
Hsuan-Chen Lu

In this study, a dual-beam piezoelectric energy harvester is proposed. This harvester consists of a main beam and an auxiliary beam with a pair of magnets attached to couple their motions. The potential energy of the system is modeled to understand the influence of the potential wells on the dynamics of the harvester. It is noted that the alignment of the magnets significantly influences the potential wells. A theoretical model of the harvester is developed based on the Euler-Bernoulli beam theory. Frequency sweeps are conducted experimentally and numerically to study the dynamics of the harvester. It is shown that the dual-beam harvester can exhibit hardening effect with different configurations of magnet alignments in frequency sweeps. The performance of the harvester can be improved with proper placement of the magnets.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2163 ◽  
Author(s):  
Sanghyun Yoon ◽  
Jinhwan Kim ◽  
Kyung-Ho Cho ◽  
Young-Ho Ko ◽  
Sang-Kwon Lee ◽  
...  

In this study, inertial mass-based piezoelectric energy generators with and without a spring were designed and tested. This energy harvesting system is based on the shock absorber, which is widely used to protect humans or products from mechanical shock. Mechanical shock energies, which were applied to the energy absorber, were converted into electrical energies. To design the energy harvester, an inertial mass was introduced to focus the energy generating position. In addition, a spring was designed and tested to increase the energy generation time by absorbing the mechanical shock energy and releasing a decreased shock energy over a longer time. Both inertial mass and the spring are the key design parameters for energy harvesters as the piezoelectric materials, Pb(Mg1/3Nb2/3)O3-PbTiO3 piezoelectric ceramics were employed to store and convert the mechanical force into electric energy. In this research, we will discuss the design and performance of the energy generator system based on shock absorbers.


Sign in / Sign up

Export Citation Format

Share Document