Observer-Based Power Management for Multi-Source Electric Vehicles Using Optimized Splitting Ratios

Author(s):  
Ahmed M. Ali ◽  
Dirk Söffker

Optimal power management in real-time is a core technology of hybrid electric vehicles (HEVs). The online application of optimized power split ratios based on driver demand is a promising approach allowing near optimal power handling decisions in real-time. However, the fulfillment of exact power delivery (driveability) is an open challenge of this approach due to interpolation of driver’s demand to the optimized discrete solutions. Finding balanced power management that handles unscheduled loads and sustains required power conversion efficiency may significantly improve the experimental application of this approach. This work proposes an observer-based control method integrated to the power management system that ensures better driveability with minimal effect on power handling optimality. Modeling of traction system for observer design is based on a simplified brushless DC motor model. Identification of system parameters is achieved by a newly introduced error minimization algorithm using NSGA-II to obtain the same dynamic response as the original system. Results analysis shows 7% reduction of power consumption and 98% improvement of driveability at minimal mitigation of power conversion efficiency.

RSC Advances ◽  
2016 ◽  
Vol 6 (21) ◽  
pp. 17354-17359 ◽  
Author(s):  
Jiajiu Ye ◽  
Li Zhou ◽  
Liangzheng Zhu ◽  
Xuhui Zhang ◽  
Zhipeng Shao ◽  
...  

This work focuses on preparing a series of substituted bipyridine cobalt complexes as HTM dopants using a co-solvent of dichloroethane and acetylacetone as the HTM solvent, achieving an optimal power conversion efficiency of 14.91%.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5107
Author(s):  
Catalina González-Castaño ◽  
Carlos Restrepo ◽  
Fredy Sanz ◽  
Andrii Chub ◽  
Roberto Giral

Many electronic power distribution systems have strong needs for highly efficient AC-DC conversion that can be satisfied by using a buck-boost converter at the core of the power factor correction (PFC) stage. These converters can regulate the input voltage in a wide range with reduced efforts compared to other solutions. As a result, buck-boost converters could potentially improve the efficiency in applications requiring DC voltages lower than the peak grid voltage. This paper compares SEPIC, noninverting, and versatile buck-boost converters as PFC single-phase rectifiers. The converters are designed for an output voltage of 200 V and an rms input voltage of 220 V at 3.2 kW. The PFC uses an inner discrete-time predictive current control loop with an output voltage regulator based on a sensorless strategy. A PLECS thermal simulation is performed to obtain the power conversion efficiency results for the buck-boost converters considered. Thermal simulations show that the versatile buck-boost (VBB) converter, currently unexplored for this application, can provide higher power conversion efficiency than SEPIC and non-inverting buck-boost converters. Finally, a hardware-in-the-loop (HIL) real-time simulation for the VBB converter is performed using a PLECS RT Box 1 device. At the same time, the proposed controller is built and then flashed to a low-cost digital signal controller (DSC), which corresponds to the Texas Instruments LAUNCHXL-F28069M evaluation board. The HIL real-time results verify the correctness of the theoretical analysis and the effectiveness of the proposed architecture to operate with high power conversion efficiency and to regulate the DC output voltage without sensing it while the sinusoidal input current is perfectly in-phase with the grid voltage.


Author(s):  
Dita Puspita

In this research, perovskite solar cells by configuring ITO/PEDOT:PSS/CH3NH3PbI3/ZnO/Al changed to optimize their performance. Modifications are made by varying the thickness of each layer to increase the ideal thickness with an optimal power conversion efficiency (PCE) value. This research used GPVDM software to study several power conversion efficiency (PCE) parameters of ITO/PEDOT:PSS/CH3NH3PbI3/ZnO/Al solar cells. The results of the study show that the power conversion efficiency (PCE) can be increased by adjusting the thickness of the coating, in this study the ideal thickness with the highest power conversion efficiency 25.75% in 1x10-8 m of ITO, 1x10-6 m of PEDOT:PSS, 4x10-7 m of CH3NH3PbI3, 1x10-8 m of ZnO and 1x10-9 m of Al.


2019 ◽  
Vol 7 (19) ◽  
pp. 11764-11770 ◽  
Author(s):  
Xuping Liu ◽  
Jihuai Wu ◽  
Qiyao Guo ◽  
Yuqian Yang ◽  
Hui Luo ◽  
...  

A perovskite solar cell with pyrrole doping achieves an optimal power conversion efficiency of 20.07%.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2237 ◽  
Author(s):  
Tomoharu Yada ◽  
Yuta Katamoto ◽  
Hiroaki Yamada ◽  
Toshihiko Tanaka ◽  
Masayuki Okamoto ◽  
...  

This paper deals with a design and experimental verification of 400-W class light-emitting diode (LED) driver with cooperative control method for two-parallel connected DC/DC converters. In the cooperative control method, one DC/DC converter is selected to supply the output current for the LED, based on the reference value of the LED current. Thus, the proposed cooperative-control strategy achieves wide dimming range operation. The discontinuous current conduction mode (DCM) operation improves the total harmonic distortion (THD) value on the AC side of the LED driver. The standard of Electrical Applications and Materials Safety Act in Japan has defined the flicker frequency and minimum optical output. The smoothing capacitors are designed by considering the power flow and LED current ripple for satisfying the standard. A prototype LED driver is constructed and tested. Experimental results demonstrate that a wide dimming operation range from 1 to 100% is achieved with a THD value less than 10% on the AC side, by the proposed control strategy. The authors compare the power conversion efficiency between Si- and SiC-metal-oxide-semiconductor field-effect transistors (MOSFETs) based LED driver. The maximum power conversion efficiency by using SiC-MOSFETs based LED driver is 91.4%. Finally, the variable switching frequency method is proposed for improving the power conversion efficiency for a low LED current region.


2020 ◽  
Vol 56 (12) ◽  
pp. 1879-1882 ◽  
Author(s):  
Wangchao Chen ◽  
Hanyu Zhang ◽  
Haofeng Zheng ◽  
Haitao Li ◽  
Fuling Guo ◽  
...  

A PSC based on a two-dimensional triphenylene-cored HTM is unveiled that shows an optimal power conversion efficiency (PCE) of 19.4%.


Nanoscale ◽  
2019 ◽  
Vol 11 (45) ◽  
pp. 21824-21833 ◽  
Author(s):  
Jyoti V. Patil ◽  
Sawanta S. Mali ◽  
Chang Kook Hong

Controlling the grain size of the organic–inorganic perovskite thin films using thiourea additives now crossing 2 μm size with >20% power conversion efficiency.


2019 ◽  
Vol 16 (3) ◽  
pp. 236-243 ◽  
Author(s):  
Hui Zhang ◽  
Yibing Ma ◽  
Youyi Sun ◽  
Jialei Liu ◽  
Yaqing Liu ◽  
...  

In this review, small-molecule donors for application in organic solar cells reported in the last three years are highlighted. Especially, the effect of donor molecular structure on power conversion efficiency of organic solar cells is reported in detail. Furthermore, the mechanism is proposed and discussed for explaining the relationship between structure and power conversion efficiency. These results and discussions draw some rules for rational donor molecular design, which is very important for further improving the power conversion efficiency of organic solar cells based on the small-molecule donor.


Sign in / Sign up

Export Citation Format

Share Document