Intelligent Scheduling for Product Distribution

Author(s):  
Deyi Xue

Abstract A number of intelligent scheduling models for product distribution have been introduced in this research. The databases, representing scheduling requirements and results, are described using object oriented modeling approach. The optimal schedule for product distribution considering relevant constraints is identified using two optimization approaches: state space search and genetic algorithm. State space search is employed when search space is not large. Genetic algorithm, on the other hand, provides a robust mechanism for identifying the global optimal schedule when the search space is large. Different heuristic functions, considering traveling time and distance, have been developed to evaluate the schedules generated in the optimization. In addition to single-vehicle based scheduling, scheduling considering a number of vehicles has also been studied.

Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3806 ◽  
Author(s):  
Rafał Wiśniowski ◽  
Paweł Łopata ◽  
Grzegorz Orłowicz

Advances in the field of material engineering, computerization, automation, and equipment miniaturization enable modernization of the existing technologies and development of new solutions for construction, inspection, and renovation of underground pipelines. Underground pipe installations are used in the energy sector, gas industry, telecommunications, water and sewage transport, heating, chemical industry, and environmental engineering. In order to build new pipeline networks, dig and no-dig techniques are used. Horizontal Directional Drilling (HDD) is one of the most popular trenchless technologies. The effectiveness of HDD technology application is mostly determined by its properly designed trajectory. Drilling failures and complications, which often accompany the application of the HDD technology, result from poor design of the well path in relation to the existing geological and drilling conditions. The article presented two concepts of Horizontal Directional Drilling well path trajectory design: Classic sectional, which is a combination of straight and curvilinear sections, and a single-section chain curve trajectory (catenary). Taking into account the advantages and disadvantages of the catenary trajectory relative to the sectional trajectory, the author’s solution was presented, which was the implementation of the sectional trajectory with a maximum shape similarity to the catenary trajectory. The new approach allowed us to take advantage of a chain curve trajectory and was easier to implement using the available technology. The least squares method, based on deviations from a catenary trajectory, was set as the matching criterion. The process of searching for a trajectory, being a combination of straight and curvilinear sections as similar as possible to a catenary-type trajectory, was carried out using two methodologies: State space search and a genetic algorithm. The article shows the pros and cons of both optimization methodologies. Taking into account the technical and technological limitations of HDD drilling devices, a new approach was proposed, combining the methodology of state space search with the genetic algorithm. A calculation example showed the application of the proposed methodology in an engineering design process.


2001 ◽  
Vol 3 (1) ◽  
pp. 11-22 ◽  
Author(s):  
J. B. Nixon ◽  
G. C. Dandy ◽  
A. R. Simpson

This paper examines the use of genetic algorithm (GA) optimization to identify water delivery schedules for an open-channel irrigation system. Significant objectives and important constraints are identified for this system, and suitable representations of these within the GA framework are developed. Objectives include maximizing the number of orders that are scheduled to be delivered at the requested time and minimizing variations in the channel flow rate. If, however, an order is to be shifted, the irrigator preference for this to be by ±24 h rather than ±12 h is accounted for. Constraints include avoiding exceedance of channel capacity. The GA approach is demonstrated for an idealized system of five irrigators on a channel spur. In this case study, the GA technique efficiently identified the optimal schedule that was independently verified using full enumeration of the entire search space of possible order schedules. Results have shown great promise in the ability of GA techniques to identify good irrigation order schedules.


2001 ◽  
Vol 14 ◽  
pp. 253-302 ◽  
Author(s):  
J. Hoffmann ◽  
B. Nebel

We describe and evaluate the algorithmic techniques that are used in the FF planning system. Like the HSP system, FF relies on forward state space search, using a heuristic that estimates goal distances by ignoring delete lists. Unlike HSP's heuristic, our method does not assume facts to be independent. We introduce a novel search strategy that combines hill-climbing with systematic search, and we show how other powerful heuristic information can be extracted and used to prune the search space. FF was the most successful automatic planner at the recent AIPS-2000 planning competition. We review the results of the competition, give data for other benchmark domains, and investigate the reasons for the runtime performance of FF compared to HSP.


2010 ◽  
Vol 139-141 ◽  
pp. 1779-1784
Author(s):  
Quan Wang ◽  
Jin Chao Liu ◽  
Pan Wang ◽  
Juan Ying Qin

Many researchers have indicated that standard genetic algorithm suffers from the dilemma---premature or non-convergence. Most researchers focused on finding better search strategies, and designing various new heuristic methods. It seemed effective. From another view, we can transform search space with a samestate-mapping. A special genetic algorithm applied to the new search space would achieve better performance. Thus, we present a new genetic algorithm based on optimal solution orientation. In this paper, a new genetic algorithm based on optimum solution orientation is presented. The algorithm is divided into "optimum solution orientation" phase and "highly accurately searching in local domain of global optimal solution" phase. Theoretical analysis and experiments indicate that OSOGA can find the "optimal" sub domain effectively. Cooperating with local search algorithm, OSOGA can achieve highly precision solution with limited computing resources.


2019 ◽  
Vol 65 ◽  
pp. 343-392
Author(s):  
Daniel Gnad ◽  
Jörg Hoffmann ◽  
Martin Wehrle

Analyzing reachability in large discrete transition systems is an important sub-problem in several areas of AI, and of CS in general. State space search is a basic method for conducting such an analysis. A wealth of techniques have been proposed to reduce the search space without affecting the existence of (optimal) solution paths. In particular, strong stubborn set (SSS) pruning is a prominent such method, analyzing action dependencies to prune commutative parts of the search space. We herein show how to apply this idea to star-topology decoupled state space search, a recent search reformulation method invented in the context of classical AI planning. Star-topology decoupled state space search, short decoupled search, addresses planning tasks where a single center component interacts with several leaf components. The search exploits a form of conditional independence arising in this setting: given a fixed path p of transitions by the center, the possible leaf moves compliant with p are independent across the leaves. Decoupled search thus searches over center paths only, maintaining the compliant paths for each leaf separately. This avoids the enumeration of combined states across leaves. Just like standard search, decoupled search is adversely affected by commutative parts of its search space. The adaptation of strong stubborn set pruning is challenging due to the more complex structure of the search space, and the resulting ways in which action dependencies may affect the search. We spell out how to address this challenge, designing optimality-preserving decoupled strong stubborn set (DSSS) pruning methods. We introduce a design for star topologies in full generality, as well as simpler design variants for the practically relevant fork and inverted fork special cases. We show that there are cases where DSSS pruning is exponentially more effective than both, decoupled search and SSS pruning, exhibiting true synergy where the whole is more than the sum of its parts. Empirically, DSSS pruning reliably inherits the best of its components, and sometimes outperforms both.


2021 ◽  
Vol 11 (8) ◽  
pp. 3388
Author(s):  
Pan Zou ◽  
Manik Rajora ◽  
Steven Y. Liang

Though many techniques were proposed for the optimization of Permutation Flow-Shop Scheduling Problem (PFSSP), current techniques only provide a single optimal schedule. Therefore, a new algorithm is proposed, by combining the k-means clustering algorithm and Genetic Algorithm (GA), for the multimodal optimization of PFSSP. In the proposed algorithm, the k-means clustering algorithm is first utilized to cluster the individuals of every generation into different clusters, based on some machine-sequence-related features. Next, the operators of GA are applied to the individuals belonging to the same cluster to find multiple global optima. Unlike standard GA, where all individuals belong to the same cluster, in the proposed approach, these are split into multiple clusters and the crossover operator is restricted to the individuals belonging to the same cluster. Doing so, enabled the proposed algorithm to potentially find multiple global optima in each cluster. The performance of the proposed algorithm was evaluated by its application to the multimodal optimization of benchmark PFSSP. The results obtained were also compared to the results obtained when other niching techniques such as clearing method, sharing fitness, and a hybrid of the proposed approach and sharing fitness were used. The results of the case studies showed that the proposed algorithm was able to consistently converge to better optimal solutions than the other three algorithms.


Author(s):  
Abdullah Türk ◽  
Dursun Saral ◽  
Murat Özkök ◽  
Ercan Köse

Outfitting is a critical stage in the shipbuilding process. Within the outfitting, the construction of pipe systems is a phase that has a significant effect on time and cost. While cutting the pipes required for the pipe systems in shipyards, the cutting process is usually performed randomly. This can result in large amounts of trim losses. In this paper, we present an approach to minimize these losses. With the proposed method it is aimed to base the pipe cutting process on a specific systematic. To solve this problem, Genetic Algorithms (GA), which gives successful results in solving many problems in the literature, have been used. Different types of genetic operators have been used to investigate the search space of the problem well. The results obtained have proven the effectiveness of the proposed approach.


2011 ◽  
Vol 460-461 ◽  
pp. 117-122 ◽  
Author(s):  
Guang Yu Zhu ◽  
Lian Fang Chen

In this paper, a multi-level method has been adopted to optimize the holes machining process with genetic algorithm (GA). Based on the analyzing of the features of the part with multi-holes, the local optimal processing route for the holes with the same processing feature is obtained with GA, then try to obtain the global optimal route with GA by considering the obtained local optimal route and the holes with different features. That is what the multi-level method means. The optimal route means the minimum moving length of the cutting tool and the minimum changing times of the cutting tool. The experiment is carried out to verify the algorithm and the proposed method, and result indicates that with GA and using the multi-level method the optimal holes machining route can be achieved efficiently.


Author(s):  
H S Ismail ◽  
K K B Hon

The general two-dimensional cutting stock problem is concerned with the optimum layout and arrangement of two-dimensional shapes within the spatial constraints imposed by the cutting stock. The main objective is to maximize the utilization of the cutting stock material. This paper presents some of the results obtained from applying a combination of genetic algorithms and heuristic approaches to the nesting of dissimilar shapes. Genetic algorithms are stochastically based optimization approaches which mimic nature's evolutionary process in finding global optimal solutions in a large search space. The paper discusses the method by which the problem is defined and represented for analysis and introduces a number of new problem-specific genetic algorithm operators that aid in the rapid conversion to an optimum solution.


Sign in / Sign up

Export Citation Format

Share Document