scholarly journals A genetic algorithm for optimizing off-farm irrigation scheduling

2001 ◽  
Vol 3 (1) ◽  
pp. 11-22 ◽  
Author(s):  
J. B. Nixon ◽  
G. C. Dandy ◽  
A. R. Simpson

This paper examines the use of genetic algorithm (GA) optimization to identify water delivery schedules for an open-channel irrigation system. Significant objectives and important constraints are identified for this system, and suitable representations of these within the GA framework are developed. Objectives include maximizing the number of orders that are scheduled to be delivered at the requested time and minimizing variations in the channel flow rate. If, however, an order is to be shifted, the irrigator preference for this to be by ±24 h rather than ±12 h is accounted for. Constraints include avoiding exceedance of channel capacity. The GA approach is demonstrated for an idealized system of five irrigators on a channel spur. In this case study, the GA technique efficiently identified the optimal schedule that was independently verified using full enumeration of the entire search space of possible order schedules. Results have shown great promise in the ability of GA techniques to identify good irrigation order schedules.

2021 ◽  
Author(s):  
Hala A. Omar ◽  
Mohammed El-Shorbagy

Abstract Grasshopper optimization algorithm (GOA) is one of the promising optimization algorithms for optimization problems. But, it has the main drawback of trapping into a local minimum, which causes slow convergence or inability to detect a solution. Several modifications and combinations have been proposed to overcome this problem. In this paper, a modified grasshopper optimization algorithm (MGOA) based genetic algorithm (GA) is proposed to overcome this problem. Modifications rely on certain mathematical assumptions and varying the domain of the Cmax control parameter to escape from the local minimum and move the search process to a new improved point. Parameter C is one of the most important parameters in GOA where it balances the exploration and exploitation of the search space. These modifications aim to lead to speed up the convergence rate by reducing the repeated solutions and the number of iterations. The proposed algorithm will be tested on the 19 main test functions to verify and investigate the influence of the proposed modifications. In addition, the algorithm will be applied to solve 5 different cases of nonlinear systems with different types of dimensions and regularity to show the reliability and efficiency of the proposed algorithm. Good results were achieved compared to the original GOA.


1997 ◽  
Vol 32 (2) ◽  
pp. 163-179 ◽  
Author(s):  
Luc Gilot ◽  
Roger Calvez ◽  
Partick Le Goulvenp ◽  
Thierry Ruf

2020 ◽  
Vol 12 (3) ◽  
pp. 1026 ◽  
Author(s):  
Julián Ignacio Monís ◽  
Rafael López-Luque ◽  
Juan Reca ◽  
Juan Martínez

Small off-grid photovoltaic (PV) pumping irrigation systems with storage tanks are an environmentally friendly, cost effective and efficient way of taking advantage of solar energy to irrigate crops, and they are increasingly being used today. However, finding the optimal design of this type of system is cumbersome since there are many possible designs. In this work, a new heuristic method based on the hybrid approach, which uses search space reduction, is developed and adapted to the optimal design for this type of PV irrigation system. At different stages, the proposed approach iteratively combines a bounding strategy based on the application of engineering rules with the aim of reducing the search space with a genetic algorithm to find the optimal design within this search space. The proposed methodology was applied to minimize the cost of a benchmark case study consisting of a real farm placed in the province of Almería (Spain). The proposed methodology was able to provide a faster and an accurate convergence due to the reduction of the search space. This fact led to a reduced total cost of the system. This study proved that the most sensitive variables were the number of modules and the type of pump, whereas the diameter of the pipe and volume of the storage tank remained more stable.


Author(s):  
Kasa Mekonen Tiku ◽  
Pratap Singh

Irrigation practice evaluation of center pivot sprinkler irrigation system at Hiwot Agricultural Mechanization farm, North/west Ethiopia was conducted. The aim of the study was evaluating the existing center pivot irrigation practice in terms of irrigation scheduling. Measuring flow rate of center pivot machines for existing irrigation practice and Crop water requirement based scheduling was used to evaluate the system. The highest value of crop water requirement at location m6, m7 and m12 was 5.24 mm/day in September at mid-stage and for location m4 and m8 in October at mid-stage equal to 4.99 mm/day. Whereas, the lowest crop water requirement at location m6, m7 and m12 was 2.52 mm/day in July at the initial stage which was and for location m4 and m8 in august at initial stage equal to 2.08 mm/day. The actual flow rate of center pivot machines varies from 0.7l/s for m7 to a maximum of 1l/s for m4 whereas estimated crop water requirement flow rate varies from 0.6l/s for m6 to a maximum of 0.8l/s for m4. The study also revealed that the actual flow rate of the nozzles was excess. Therefore improvement of center pivot sprinkler irrigation system can be amended by using proper irrigation scheduling and by introducing an automatic control system.


Author(s):  
Deyi Xue

Abstract A number of intelligent scheduling models for product distribution have been introduced in this research. The databases, representing scheduling requirements and results, are described using object oriented modeling approach. The optimal schedule for product distribution considering relevant constraints is identified using two optimization approaches: state space search and genetic algorithm. State space search is employed when search space is not large. Genetic algorithm, on the other hand, provides a robust mechanism for identifying the global optimal schedule when the search space is large. Different heuristic functions, considering traveling time and distance, have been developed to evaluate the schedules generated in the optimization. In addition to single-vehicle based scheduling, scheduling considering a number of vehicles has also been studied.


2011 ◽  
Vol 21 (1) ◽  
pp. 22-29 ◽  
Author(s):  
Bee Ling Poh ◽  
Aparna Gazula ◽  
Eric H. Simonne ◽  
Robert C. Hochmuth ◽  
Michael R. Alligood

For shallow-rooted vegetables grown in sandy soils with low water-holding capacity (volumetric water content <10%), irrigation water application rate needs to provide sufficient water to meet plant needs, to avoid water movement below the root zone, and to reduce leaching risk. Because most current drip tapes have flow rates (FRs) greater than soil hydraulic conductivity, reducing irrigation operating pressure (OP) as a means to reduce drip emitter FR may allow management of irrigation water application rate. The objectives of this study were to determine the effect of using a reduced system OP (6 and 12 psi) on the FRs, uniformity, and soil wetted depth and width by using three commercially available drip tapes differing in emitter FR at 12 psi (Tape A = 0.19 gal/h, Tape B = 0.22 gal/h, and Tape C = 0.25 gal/h). Reducing OP reduced FRs (Tape A = 0.13 gal/h, Tape B = 0.17 gal/h, and Tape C = 0.16 gal/h) without affecting uniformity of irrigation at 100 and 300 ft lateral runs. Flow rate was also reduced at 300-ft lateral length compared with 100 ft for all three tapes. Uniformity was reduced [“moderate” to “unacceptable” emitter flow variation (qvar) and “moderate” coefficient of variation (cv)] at 300 ft for Tape B and C compared with “good” qvar and “moderate” to “excellent” cv at 100 ft. Using soluble dye as a tracer, depth (D) of the waterfront response to irrigated volume (V) was quadratic, D = 4.42 + 0.21V − 0.001V2 (P < 0.01, R2 = 0.72), at 6 psi, with a similar response at 12 psi, suggesting that depth of the wetted zone was more affected by total volume applied rather than by OP itself. The depth of the wetted zone went below 12 inches when V was ≈45 gal/100 ft, which represented ≈3 h of irrigation at 6 psi and 1.8 h of irrigation at 12 psi for a typical drip tape with FR of 0.24 gal/h at 12 psi. These results show that, for the same volume of water applied, reduced OP allowed extended irrigation time without increasing the wetted depth. OP also did not affect the width (W) of the wetted front, which was quadratic, W = 6.97 + 0.25V − 0.002V2 (P < 0.01, R2 = 0.70), at 6 psi. As the maximum wetted width at reduced OP was 53% of the 28-inch-wide bed, reduced OP should be used for two-row planting or drip-injected fumigation only if two drip tapes were used to ensure good coverage and uniform application. Reducing OP offers growers a simple method to reduce FR and apply water at rates that match more closely the hourly evapotranspiration, minimizing the risk of leaching losses.


2018 ◽  
Vol 14 (1) ◽  
pp. 31-60 ◽  
Author(s):  
M. Y. Guida ◽  
F. E. Laghchioua ◽  
A. Hannioui

This article deals with fast pyrolysis of brown algae, such as Bifurcaria Bifurcata at the range of temperature 300–800 °C in a stainless steel tubular reactor. After a literature review on algae and its importance in renewable sector, a case study was done on pyrolysis of brown algae especially, Bifurcaria Bifurcata. The aim was to experimentally investigate how the temperature, the particle size, the nitrogen flow rate (N2) and the heating rate affect bio-oil, bio-char and gaseous products. These parameters were varied in the ranges of 5–50 °C/min, below 0.2–1 mm and 20–200 mL. min–1, respectively. The maximum bio-oil yield of 41.3wt% was obtained at a pyrolysis temperature of 600 °C, particle size between 0.2–0.5 mm, nitrogen flow rate (N2) of 100 mL. min–1 and heating rate of 5 °C/min. Liquid product obtained under the most suitable and optimal condition was characterized by elemental analysis, 1H-NMR, FT-IR and GC-MS. The analysis of bio-oil showed that bio-oil from Bifurcaria Bifurcata could be a potential source of renewable fuel production and value added chemicals.


2018 ◽  
Vol 12 (3) ◽  
pp. 181-187
Author(s):  
M. Erkan Kütük ◽  
L. Canan Dülger

An optimization study with kinetostatic analysis is performed on hybrid seven-bar press mechanism. This study is based on previous studies performed on planar hybrid seven-bar linkage. Dimensional synthesis is performed, and optimum link lengths for the mechanism are found. Optimization study is performed by using genetic algorithm (GA). Genetic Algorithm Toolbox is used with Optimization Toolbox in MATLAB®. The design variables and the constraints are used during design optimization. The objective function is determined and eight precision points are used. A seven-bar linkage system with two degrees of freedom is chosen as an example. Metal stamping operation with a dwell is taken as the case study. Having completed optimization, the kinetostatic analysis is performed. All forces on the links and the crank torques are calculated on the hybrid system with the optimized link lengths


Sign in / Sign up

Export Citation Format

Share Document