Parameter Estimation for Systems With Randomly Missing Output Under Network Environment

Author(s):  
Yang Shi ◽  
Huazhen Fang

In this paper, we study how to identify the model parameters of a plant with randomly missing output in a network environment. As a result of networked-induced time delays and packet loss, the identification is inevitable to be affected by data missing. We propose to online estimate the missing output measurements, and employ the Kalman filter to estimate system parameters recursively. Convergence analysis on parameter estimation and output estimation is carried out. Simulation results verify the effectiveness of the proposed algorithm.

Author(s):  
Xian Zhang ◽  
Pierluigi Pisu

This paper proposes a model-based approach for the fuel cell flooding diagnostics problem. The cathode channel flooding and the GDL flooding diagnostic problems are decoupled and formulated as standard joint state and parameter estimation problems, with the amounts of the liquid water treated as varying system parameters to be identified. The unscented Kalman Filter technique has been applied to solve these problems. Simulation results prove the applicability of the cascading unscented Kalman filter design for flooding diagnostics.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Wenxian Duan ◽  
Chuanxue Song ◽  
Yuan Chen ◽  
Feng Xiao ◽  
Silun Peng ◽  
...  

An accurate state of charge (SOC) can provide effective judgment for the BMS, which is conducive for prolonging battery life and protecting the working state of the entire battery pack. In this study, the first-order RC battery model is used as the research object and two parameter identification methods based on the least square method (RLS) are analyzed and discussed in detail. The simulation results show that the model parameters identified under the Federal Urban Driving Schedule (HPPC) condition are not suitable for the Federal Urban Driving Schedule (FUDS) condition. The parameters of the model are not universal through the HPPC condition. A multitimescale prediction model is also proposed to estimate the SOC of the battery. That is, the extended Kalman filter (EKF) is adopted to update the model parameters and the adaptive unscented Kalman filter (AUKF) is used to predict the battery SOC. The experimental results at different temperatures show that the EKF-AUKF method is superior to other methods. The algorithm is simulated and verified under different initial SOC errors. In the whole FUDS operating condition, the RSME of the SOC is within 1%, and that of the voltage is within 0.01 V. It indicates that the proposed algorithm can obtain accurate estimation results and has strong robustness. Moreover, the simulation results after adding noise errors to the current and voltage values reveal that the algorithm can eliminate the sensor accuracy effect to a certain extent.


2018 ◽  
Vol 25 (4) ◽  
pp. 731-746 ◽  
Author(s):  
Sangeetika Ruchi ◽  
Svetlana Dubinkina

Abstract. Over the years data assimilation methods have been developed to obtain estimations of uncertain model parameters by taking into account a few observations of a model state. The most reliable Markov chain Monte Carlo (MCMC) methods are computationally expensive. Sequential ensemble methods such as ensemble Kalman filters and particle filters provide a favorable alternative. However, ensemble Kalman filter has an assumption of Gaussianity. Ensemble transform particle filter does not have this assumption and has proven to be highly beneficial for an initial condition estimation and a small number of parameter estimations in chaotic dynamical systems with non-Gaussian distributions. In this paper we employ ensemble transform particle filter (ETPF) and ensemble transform Kalman filter (ETKF) for parameter estimation in nonlinear problems with 1, 5, and 2500 uncertain parameters and compare them to importance sampling (IS). The large number of uncertain parameters is of particular interest for subsurface reservoir modeling as it allows us to parameterize permeability on the grid. We prove that the updated parameters obtained by ETPF lie within the range of an initial ensemble, which is not the case for ETKF. We examine the performance of ETPF and ETKF in a twin experiment setup, where observations of pressure are synthetically created based on the known values of parameters. For a small number of uncertain parameters (one and five) ETPF performs comparably to ETKF in terms of the mean estimation. For a large number of uncertain parameters (2500) ETKF is robust with respect to the initial ensemble, while ETPF is sensitive due to sampling error. Moreover, for the high-dimensional test problem ETPF gives an increase in the root mean square error after data assimilation is performed. This is resolved by applying distance-based localization, which however deteriorates a posterior estimation of the leading mode by largely increasing the variance due to a combination of less varying localized weights, not keeping the imposed bounds on the modes via the Karhunen–Loeve expansion, and the main variability explained by the leading mode. A possible remedy is instead of applying localization to use only leading modes that are well estimated by ETPF, which demands knowledge of which mode to truncate.


2015 ◽  
Vol 12 (8) ◽  
pp. 8131-8173 ◽  
Author(s):  
J. Rasmussen ◽  
H. Madsen ◽  
K. H. Jensen ◽  
J. C. Refsgaard

Abstract. The use of bias-aware Kalman filters for estimating and correcting observation bias in groundwater head observations is evaluated using both synthetic and real observations. In the synthetic test, groundwater head observations with a constant bias and unbiased stream discharge observations are assimilated in a catchment scale integrated hydrological model with the aim of updating stream discharge and groundwater head, as well as several model parameters relating to both stream flow and groundwater modeling. The Colored Noise Kalman filter (ColKF) and the Separate bias Kalman filter (SepKF) are tested and evaluated for correcting the observation biases. The study found that both methods were able to estimate most of the biases and that using any of the two bias estimation methods resulted in significant improvements over using a bias-unaware Kalman Filter. While the convergence of the ColKF was significantly faster than the convergence of the SepKF, a much larger ensemble size was required as the estimation of biases would otherwise fail. Real observations of groundwater head and stream discharge were also assimilated, resulting in improved stream flow modeling in terms of an increased Nash-Sutcliffe coefficient while no clear improvement in groundwater head modeling was observed. Both the ColKF and the SepKF tended to underestimate the biases, which resulted in drifting model behavior and sub-optimal parameter estimation, but both methods provided better state updating and parameter estimation than using a bias-unaware filter.


Author(s):  
Kamalanand Krishnamurthy

Parameter estimation is a central issue in mathematical modelling of biomedical systems and for the development of patient specific models. The technique of estimating parameters helps in obtaining diagnostic information from computational models of biological systems. However, in most of the biomedical systems, the estimation of model parameters is a challenging task due to the nonlinearity of mathematical models. In this chapter, the method of estimation of nonlinear model parameters from measurements of state variables, using the extended Kalman filter, is extensively explained using an example of the three-dimensional model of the HIV/AIDS system.


2011 ◽  
Vol 474-476 ◽  
pp. 2263-2268 ◽  
Author(s):  
Yu Wu ◽  
Yuan Yao ◽  
Li Wang

From the view of complex networks and emergent computation, a new emergence model of public opinion is built. It is based on small-world model, and takes Internet users as agents. Then the system parameters and realistic interactions in this model are set. Simulation results show that our model can demonstrate the whole evolution process of formed or unformed public opinion. The formation evolution of public opinion is in accordance with the real network of public opinion. We can get all kinds of public opinion forms via setting different model parameters. By comparing with the existing network model, there is an obvious advantage for the interaction rules and forms in our model, and it is realistic and reasonable. As a new model for the complex system, it can be used as one of the objects for studying the network behaviors and emergent computation.


2015 ◽  
Vol 740 ◽  
pp. 499-502
Author(s):  
Qi Li ◽  
Wen Bin Zhang ◽  
Ping Li ◽  
Shi Su ◽  
Yu Ting Yan ◽  
...  

The accuracy of model becomes increasingly demanding in the simulation system with the development of supercapacitor. The traditional methods of parameters identification in supercapacitor modeling are very complicated. This paper presents an easy and new method by the Simulink tool. The experimental data for the identification of the model parameters was obtained through the constant charge-discharge experiments. Then the variable capacitor of the supercapacitor equivalent circuit model was modeled in Simscape Language, so parameters directly got with Parameter estimation in Sumulink. Simulation results were presented and compared experimental data. And the result showed that the new method was not only speeded the identification of parameters, but also improved the modeling precision up to 98%.


2021 ◽  
Author(s):  
Mengtian Lu ◽  
Sicheng Lu ◽  
Weihong Liao ◽  
Xiaohui Lei ◽  
Zhaokai Yin ◽  
...  

Abstract Although field measurements and using long hydrological datasets provide a reliable method for parameters' calibration, changes in the underlying basin surface and lack of hydrometeorological data may affect parameter accuracy in streamflow simulation. The ensemble Kalman filter (EnKF) can be used as a real-time parameter correction method to solve this problem. In this study, five representative Xin'anjiang model parameters are selected to study the effects of the initial parameter ensemble distribution and the specific function form of the parameter on EnKF parameter estimation process for both single and multiple parameters. Results indicate: (1) the method of parameter calibration to determine the initial distribution mean can improve the assimilation efficiency; (2) there is mutual interference among the parameters during multiple parameters' estimation which invalidates some conclusions of single-parameter estimation. We applied and evaluated the EnKF method in Jinjiang River Basin, China. Compared to traditional approaches, our method showed a better performance in both basins with long hydrometeorological dataset (an increase of Kling–Gupta efficiency (KGE) from 0.810 to 0.887 and a decrease of bias from −1.08% to −0.74%); and in basins with a lack of hydrometeorological data (an increase of KGE from 0.536 to 0.849 and a decrease of bias from −15.55% to −11.42%).


2018 ◽  
pp. 690-713
Author(s):  
Kamalanand Krishnamurthy

Parameter estimation is a central issue in mathematical modelling of biomedical systems and for the development of patient specific models. The technique of estimating parameters helps in obtaining diagnostic information from computational models of biological systems. However, in most of the biomedical systems, the estimation of model parameters is a challenging task due to the nonlinearity of mathematical models. In this chapter, the method of estimation of nonlinear model parameters from measurements of state variables, using the extended Kalman filter, is extensively explained using an example of the three-dimensional model of the HIV/AIDS system.


2019 ◽  
Vol 2019 ◽  
pp. 1-5
Author(s):  
Mohammed Benmoumen ◽  
Jelloul Allal ◽  
Imane Salhi

In this paper we elaborate an algorithm to estimate p-order Random Coefficient Autoregressive Model (RCA(p)) parameters. This algorithm combines quasi-maximum likelihood method, the Kalman filter, and the simulated annealing method. In the aim to generalize the results found for RCA(1), we have integrated a subalgorithm which calculate the theoretical autocorrelation. Simulation results demonstrate that the algorithm is viable and promising.


Sign in / Sign up

Export Citation Format

Share Document