Preliminary Investigation of Provability of Li-Ion Macroscale Models Subject to Capacity Fade

Author(s):  
Harikesh Arunachalam ◽  
Ilenia Battiato ◽  
Simona Onori

Estimating the remaining useful life of lithium-ion batteries is crucial for their application as energy storage devices in stationary and automotive applications. It is therefore important to understand battery degradation based on chemistry, usage patterns, and operating environment. Different degradation mechanisms that affect performance and durability of lithium-ion batteries have been identified over the past decades. Amongst them, the solid-electrolyte interface (SEI) layer growth has been observed to be the most influential cause of capacity fading. In this paper, we introduce for the very first time, a framework that evaluates the predictive ability of physics-based macroscopic models in capturing battery dynamics as function of their state-of-health (SoH). Using data from accelerated aging experiments, we identify the applicability conditions of classical electrochemical models. This analysis is performed using a phase diagram approach that involves parameters controlling the micro-scale dynamics inside the lithium-ion cell.

2013 ◽  
Vol 239 ◽  
pp. 680-688 ◽  
Author(s):  
Adnan Nuhic ◽  
Tarik Terzimehic ◽  
Thomas Soczka-Guth ◽  
Michael Buchholz ◽  
Klaus Dietmayer

Author(s):  
Renxiong Liu

Objective: Lithium-ion batteries are important components used in electric automobiles (EVs), fuel cell EVs and other hybrid EVs. Therefore, it is greatly important to discover its remaining useful life (RUL). Methods: In this paper, a battery RUL prediction approach using multiple kernel extreme learning machine (MKELM) is presented. The MKELM’s kernel keeps diversified by consisting multiple kernel functions including Gaussian kernel function, Polynomial kernel function and Sigmoid kernel function, and every kernel function’s weight and parameter are optimized through differential evolution (DE) algorithm. Results : Battery capacity data measured from NASA Ames Prognostics Center are used to demonstrate the prediction procedure of the proposed approach, and the MKELM is compared with other commonly used prediction methods in terms of absolute error, relative accuracy and mean square error. Conclusion: The prediction results prove that the MKELM approach can accurately predict the battery RUL. Furthermore, a compare experiment is executed to validate that the MKELM method is better than other prediction methods in terms of prediction accuracy.


Author(s):  
Xia Hua ◽  
Alan Thomas

Lithium-ion batteries are being increasingly used as the main energy storage devices in modern mobile applications, including modern spacecrafts, satellites, and electric vehicles, in which consistent and severe vibrations exist. As the lithium-ion battery market share grows, so must our understanding of the effect of mechanical vibrations and shocks on the electrical performance and mechanical properties of such batteries. Only a few recent studies investigated the effect of vibrations on the degradation and fatigue of battery cell materials as well as the effect of vibrations on the battery pack structure. This review focused on the recent progress in determining the effect of dynamic loads and vibrations on lithium-ion batteries to advance the understanding of lithium-ion battery systems. Theoretical, computational, and experimental studies conducted in both academia and industry in the past few years are reviewed herein. Although the effect of dynamic loads and random vibrations on the mechanical behavior of battery pack structures has been investigated and the correlation between vibration and the battery cell electrical performance has been determined to support the development of more robust electrical systems, it is still necessary to clarify the mechanical degradation mechanisms that affect the electrical performance and safety of battery cells.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 487
Author(s):  
Tae-Kue Kim ◽  
Sung-Chun Moon

The growth of the lithium-ion battery market is accelerating. Although they are widely used in various fields, ranging from mobile devices to large-capacity energy storage devices, stability has always been a problem, which is a critical disadvantage of lithium-ion batteries. If the battery is unstable, which usually occurs at the end of its life, problems such as overheating and overcurrent during charge-discharge increase. In this paper, we propose a method to accurately predict battery life in order to secure battery stability. Unlike the existing methods, we propose a method of assessing the life of a battery by estimating the irreversible energy from the basic law of entropy using voltage, current, and time in a realistic dimension. The life estimation accuracy using the proposed method was at least 91.6%, and the accuracy was higher than 94% when considering the actual used range. The experimental results proved that the proposed method is a practical and effective method for estimating the life of lithium-ion batteries.


2021 ◽  
Vol 7 ◽  
pp. 5562-5574 ◽  
Author(s):  
Shunli Wang ◽  
Siyu Jin ◽  
Dekui Bai ◽  
Yongcun Fan ◽  
Haotian Shi ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Chaolong Zhang ◽  
Yigang He ◽  
Lifeng Yuan ◽  
Sheng Xiang ◽  
Jinping Wang

Lithium-ion batteries are widely used in many electronic systems. Therefore, it is significantly important to estimate the lithium-ion battery’s remaining useful life (RUL), yet very difficult. One important reason is that the measured battery capacity data are often subject to the different levels of noise pollution. In this paper, a novel battery capacity prognostics approach is presented to estimate the RUL of lithium-ion batteries. Wavelet denoising is performed with different thresholds in order to weaken the strong noise and remove the weak noise. Relevance vector machine (RVM) improved by differential evolution (DE) algorithm is utilized to estimate the battery RUL based on the denoised data. An experiment including battery 5 capacity prognostics case and battery 18 capacity prognostics case is conducted and validated that the proposed approach can predict the trend of battery capacity trajectory closely and estimate the battery RUL accurately.


Sign in / Sign up

Export Citation Format

Share Document