Locomotion of a Multi-Link Nonholonomic Snake Robot

Author(s):  
Tony Dear ◽  
Scott David Kelly ◽  
Matthew Travers ◽  
Howie Choset

Robot system models often have difficulty allowing for direct command over all input degrees of freedom if the system has a large number of imposed constraints. A snake robot with more than three links and a nonholonomic wheel on each link cannot achieve arbitrary configurations in all of its joints simultaneously. For such a system, we assume partial command over a subset of the joints, and allow the rest to evolve according to kinematic chained and dynamic models. Different combinations of commanded and passive joints, as well as the presence of dynamic elements such as torsional springs, can drastically change the coupling interactions and stable oscillations of the joints. We use the oscillation modes that emerge to inform feedback controllers that achieve desired overall locomotion of the robot.

2020 ◽  
Vol 39 (5) ◽  
pp. 598-616
Author(s):  
Tony Dear ◽  
Blake Buchanan ◽  
Rodrigo Abrajan-Guerrero ◽  
Scott David Kelly ◽  
Matthew Travers ◽  
...  

Conventional approaches in prescribing controls for locomoting robots assume control over all input degrees of freedom (DOFs). Many robots, such as those with non-holonomic constraints, may not require or even allow for direct command over all DOFs. In particular, a snake robot with more than three links with non-holonomic constraints cannot achieve arbitrary configurations in all of its joints while simultaneously locomoting. For such a system, we assume partial command over a subset of the joints, and allow the rest to evolve according to kinematic chained and dynamic models. Different combinations of actuated and passive joints, as well as joints with dynamic elements such as torsional springs, can drastically change the coupling interactions and stable oscillations of joints. We use tools from nonlinear analysis to understand emergent oscillation modes of various robot configurations and connect them to overall locomotion using geometric mechanics and feedback control for robots that may not fully utilize all available inputs. We also experimentally verify observations and motion planning results on a physical non-holonomic snake robot.


Author(s):  
Mortadha Graa ◽  
Mohamed Nejlaoui ◽  
Ajmi Houidi ◽  
Zouhaier Affi ◽  
Lotfi Romdhane

In this paper, an analytical reduced dynamic model of a rail vehicle system is developed. This model considers only 38 degrees of freedom of the rail vehicle system. This reduced model can predict the dynamic behaviour of the rail vehicle while being simpler than existing dynamic models. The developed model is validated using experimental results found in the bibliography and its results are compared with existing more complex models from the literature. The developed model is used for the passenger comfort evaluation, which is based on the value of the weighted root mean square acceleration according to the ISO 2631 standard. Several parameters of the system, i.e., passenger position, loading of the railway vehicle and its speed, and their effect on the passenger comfort are investigated. It was shown that the level of comfort is mostly affected by the speed of the railway vehicle and the position of the seat. The load, however, did not have a significant effect on the level of comfort of the passenger.


2021 ◽  
Vol 15 ◽  
Author(s):  
Lijia Liu ◽  
Joseph L. Cooper ◽  
Dana H. Ballard

Improvements in quantitative measurements of human physical activity are proving extraordinarily useful for studying the underlying musculoskeletal system. Dynamic models of human movement support clinical efforts to analyze, rehabilitate injuries. They are also used in biomechanics to understand and diagnose motor pathologies, find new motor strategies that decrease the risk of injury, and predict potential problems from a particular procedure. In addition, they provide valuable constraints for understanding neural circuits. This paper describes a physics-based movement analysis method for analyzing and simulating bipedal humanoid movements. The model includes the major body segments and joints to report human movements' energetic components. Its 48 degrees of freedom strike a balance between very detailed models that include muscle models and straightforward two-dimensional models. It has sufficient accuracy to analyze and synthesize movements captured in real-time interactive applications, such as psychophysics experiments using virtual reality or human-in-the-loop teleoperation of a simulated robotic system. The dynamic model is fast and robust while still providing results sufficiently accurate to be used to animate a humanoid character. It can also estimate internal joint forces used during a movement to create effort-contingent stimuli and support controlled experiments to measure the dynamics generating human behaviors systematically. The paper describes the innovative features that allow the model to integrate its dynamic equations accurately and illustrates its performance and accuracy with demonstrations. The model has a two-foot stance ability, capable of generating results comparable with an experiment done with subjects, and illustrates the uncontrolled manifold concept. Additionally, the model's facility to capture large energetic databases opens new possibilities for theorizing as to human movement function. The model is freely available.


2021 ◽  
pp. 1-46
Author(s):  
João Angelo Ferres Brogin ◽  
Jean Faber ◽  
Douglas Domingues Bueno

Abstract Epilepsy is one of the most common brain disorders worldwide, affecting millions of people every year. Although significant effort has been put into better understanding it and mitigating its effects, the conventional treatments are not fully effective. Advances in computational neuroscience, using mathematical dynamic models that represent brain activities at different scales, have enabled addressing epilepsy from a more theoretical standpoint. In particular, the recently proposed Epileptor model stands out among these models, because it represents well the main features of seizures, and the results from its simulations have been consistent with experimental observations. In addition, there has been an increasing interest in designing control techniques for Epileptor that might lead to possible realistic feedback controllers in the future. However, such approaches rely on knowing all of the states of the model, which is not the case in practice. The work explored in this letter aims to develop a state observer to estimate Epileptor's unmeasurable variables, as well as reconstruct the respective so-called bursters. Furthermore, an alternative modeling is presented for enhancing the convergence speed of an observer. The results show that the proposed approach is efficient under two main conditions: when the brain is undergoing a seizure and when a transition from the healthy to the epileptiform activity occurs.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Darong Huang ◽  
Hong Zhan ◽  
Chenguang Yang

Bimanual robots have been studied for decades and regulation on internal force of the being held object by two manipulators becomes a research interest in recent years. In this paper, based on impedance model, a method to obtain the optimal target position for bimanual robots to hold an object is proposed. We introduce a cost function combining the errors of the force and the position and manage to minimize its value to gain the optimal coordinates for the robot end effectors (EE). To implement this method, two necessary algorithms are presented, which are the closed-loop inverse kinematics (CLIK) method to work out joint positions from desired EE pose and the generalized-momentum-based external force observer to measure the subjected force acting on the EE so as to properly compensate for the joint torques. To verify the effectiveness, practicality, and adaptivity of the proposed scheme, in the simulation, a bimanual robot system with three degrees of freedom (DOF) in every manipulator was constructed and employed to hold an object, where the results are satisfactory.


Author(s):  
Jun Yu ◽  
Maura Imbimbo ◽  
Raimondo Betti

The common assumption in the so-called linear inverse vibration problem, which provides the mass/stiffness/damping matrices of second order dynamic models, is the availability of a full set of sensors and actuators. In “reduced-order” problems (with limited number of instrumentation), only the components of the eigenvector matrix regarding the measured degrees of freedom can be successfully identified while nothing can be said about the components connected to the unmeasured degrees of freedom. This paper presents a recently developed “reduced-order” model and expands such a model to a “full-order” one that is quite useful in damage detection. The five representative categories of “reduced-order” problems, defined by considering different types of geometrical conditions, are analyzed and a discussion on their solution space has been performed. The effectiveness and robustness of this approach is shown by means of a numerical example.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6524
Author(s):  
Xiaoliang Wang ◽  
Deren Gong ◽  
Yifei Jiang ◽  
Qiankun Mo ◽  
Zeyu Kang ◽  
...  

Spacecraft formation flying (SFF) in highly elliptical orbit (HEO) has attracted a great deal of attention in many space exploration applications, while precise guidance, navigation, and control (GNC) technology—especially precise ranging—are the basis of success for such SFF missions. In this paper, we introduce a novel K-band microwave ranging (MWR) equipment for the on-orbit verification of submillimeter-level precise ranging technology in future HEO SFF missions. The ranging technique is a synchronous dual one-way ranging (DOWR) microwave phase accumulation system, which achieved a ranging accuracy of tens of microns in the laboratory environment. The detailed design and development process of the MWR equipment are provided, ranging error sources are analyzed, and relative orbit dynamic models for HEO formation scenes are given with real perturbations considered. Moreover, an adaptive Kalman filter algorithm is introduced for SFF relative navigation design, incorporating process noise uncertainty. The performance of SFF relative navigation while using MWR is tested in a hardware-in-the-loop (HIL) simulation system within a high-precision six degrees of freedom (6-DOF) moving platform. The final range estimation errors from MWR using the adaptive filter were less than 35 μm and 8.5 μm/s for range rate, demonstrating the promising accuracy for future HEO formation mission applications.


2020 ◽  
Vol 7 (9) ◽  
pp. 200111
Author(s):  
Pietro Morasso

This study proposes a generalization of the ankle and hip postural strategies to be applied to the large class of skills that share the same basic challenge of defeating the destabilizing effect of gravity on the basis of the same neuromotor control organization, adapted and specialized to a variable number of degrees of freedom, different body parts, different muscles and different sensory feedback channels. In all the cases, we can identify two crucial elements (the CoP, centre of pressure and the CoM, centre of mass) and the central point of the paper is that most balancing skills can be framed in the CoP–CoM interplay and can be modelled as a combination/alternation of two basic stabilization strategies: the standard well-investigated COPS (or CoP stabilization strategy, the default option), where the CoM is the controlled variable and the CoP is the control variable, and the less investigated COMS (or CoM stabilization strategy), where CoP and CoM must exchange their role because the range of motion of the CoP is strongly constrained by environmental conditions. The paper focuses on the tightrope balancing skill where sway control in the sagittal plane is modelled in terms of the COPS while the more challenging sway in the coronal plane is modelled in terms of the COMS, with the support of a suitable balance pole. Both stabilization strategies are implemented as state-space intermittent, delayed feedback controllers, independent of each other. Extensive simulations support the degree of plausibility, generality and robustness of the proposed approach.


Author(s):  
Frank Sandner ◽  
David Schlipf ◽  
Denis Matha ◽  
Po Wen Cheng

The purpose of this paper is to show an exemplary methodology for the integrated conceptioning of a floating wind turbine system with focus on the spar-type hull and the wind turbine blade-pitch-to-feather controller. It is a special interest to use a standard controller, which is easily implementable, even at early design stages. The optimization of the system is done with adapted static and dynamic models through a stepwise narrowing of the design space according to the requirements of floating wind turbines. After selecting three spar-type hull geometries with variable draft a simplified nonlinear simulation model with four degrees of freedom is set up and then linearized including the aerodynamics with the blade pitch controller in the closed-loop. The linear system allows conventional procedures for SISO controller design giving a theoretically suitable range of controller gains. Subsequently, the nonlinear model is used to find the optimal controller gains for each platform. Finally, a nonlinear coupled model with nine degrees of freedom gives the optimal solution under realistic wind and wave loads.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Juan Tian ◽  
Qiang Lu

The octopus arm has attracted many researchers’ interests and became a research hot spot because of its amazing features. Several dynamic models inspired by an octopus arm are presented to realize the structure with a large number of degrees of freedom. The octopus arm is made of a soft material introducing high-dimensionality, nonlinearity, and elasticity, which makes the octopus arm difficult to control. In this paper, three coupled central pattern generators (CPGs) are built and a 2-dimensional dynamic model of the octopus arm is presented to explore possible strategies of the octopus movement control. And the CPGs’ signals treated as activation are added on the ventral, dorsal, and transversal sides, respectively. The effects of the octopus arm are discussed when the parameters of the CPGs are changed. Simulations show that the octopus arm movements are mainly determined by the shapes of three CPGs’ phase diagrams. Therefore, some locomotion modes are supposed to be embedded in the neuromuscular system of the octopus arm. And the octopus arm movements can be achieved by modulating the parameters of the CPGs. The results are beneficial for researchers to understand the octopus movement further.


Sign in / Sign up

Export Citation Format

Share Document