Numerical Investigation on Ventilation Strategy for Laboratories: An Approach to Control Thermal Comfort and Air Quality Using Active Chilled Beams

Author(s):  
Farhad Memarzadeh ◽  
Jane Jiang ◽  
Andy Manning

Laboratories are usually equipment intensive. The supply flow rates required to cool these laboratories are generally higher than in a less equipment intensive zone of the building. The thermal comfort of occupants in laboratories can be controlled by the choice of ventilation strategy. This study employs Computational Fluid Dynamics (CFD) simulation to assess the performance of active chilled beams in a general laboratory layout with some equipment intensive areas and the removal effectiveness of such a system. The chilled beam performance is also compared with at of ceiling diffusers. The results from this study show that the chilled beams improve thermal comfort, and they can be operated at as low as 4 ACH while maintaining very satisfactory average PPD (around 10%) in the occupied zones. The chilled beam system also improves removal effectiveness because of the inherent higher total supply flow rate that results in a better mixing in the room than ceiling diffusers. The chilled beams in the cases studied are seen to have an insignificant effect on the hood containment. As satisfactory thermal comfort and air quality can be achieved at a lower flow rate in comparison with all-air ceiling diffusers, a 14% saving is estimated in annual energy cost for cooling and ventilating a typical lab in the Washington DC area.

2007 ◽  
Vol 2 (2) ◽  
pp. 131-150 ◽  
Author(s):  
Jatuwat Varodompun ◽  
Mojtaba Navvab

In Heating Ventilating and Air Conditioning (HVAC) systems, ventilation strategies impact building energy consumption, occupants' thermal comfort and Indoor Air Quality (IAQ). Ventilation strategies such as Mixing Jet Ventilation (MJV), Displacement Ventilation (DV), and Impinging Jet Ventilation (IJV) are operated on the different principals. MJV relies on dilution, while DV and IJV rely on both dilution and stratification. Due to climatic variation, ventilation strategies must be operated under different cooling and heating load scenarios. Typically, each ventilation strategy controls the indoor environment through a single adequate flow rate with suitable supply parameters such as temperature, pollutant concentration, vapor, velocity, etc. Hence, the indoor thermal and IAQ condition are independently impacted. A room with excellent thermal condition is possible to have poor IAQ. Given this limitation, vast air flow variables, and occupants' activities, the performances evaluation of these strategies are complicated. In this study, three ventilation strategies, MJV, DV, and IJV are thoroughly investigated. The Computational Fluid Dynamics (CFD) simulation was mainly utilized to handle the complexity of this study. The parametric studies of 48 CFD simulations are presented. Referring to ASHRAE RP-1133, the experimental data from a specially built HVAC-IEQ laboratory was used to validate the CFD data. The research results indicate both advantages and disadvantages in all three strategies. In addition, there is no single strategy that can perform excellently in all indexes. Using the well-known index called ventilation effectiveness (VEF), DV performs outstandingly. However, under a newly proposed index called ventilation performances, DV fails because the stratification discomfort exceeds 36% of room area. MJV suffers from low VEF and excessive draft. However, the IAQ of MJV is not as poor as expected. IJV can be an alternative especially for space where sleeping and sitting activities dominate. IJV can conserve HVAC energy, while maintaining good IAQ. Compared to DV, although VEF is lower, stratification discomfort is minimized to 24%–12% (depending on supply velocity). Overall, this study demonstrates that ventilation strategies are the key to enhance IAQ. Therefore, the utilization of an appropriate ventilation strategy might increase, Leadership in Energy and Environmental Design (LEED) score, particularly for Indoor Environmental Quality, Innovation and Design Process, and Energy and Atmospheric categories.


Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 4
Author(s):  
Dillon Alexander Wilson ◽  
Kul Pun ◽  
Poo Balan Ganesan ◽  
Faik Hamad

Microbubble generators are of considerable importance to a range of scientific fields from use in aquaculture and engineering to medical applications. This is due to the fact the amount of sea life in the water is proportional to the amount of oxygen in it. In this paper, experimental measurements and computational Fluid Dynamics (CFD) simulation are performed for three water flow rates and three with three different air flow rates. The experimental data presented in the paper are used to validate the CFD model. Then, the CFD model is used to study the effect of diverging angle and throat length/throat diameter ratio on the size of the microbubble produced by the Venturi-type microbubble generator. The experimental results showed that increasing water flow rate and reducing the air flow rate produces smaller microbubbles. The prediction from the CFD results indicated that throat length/throat diameter ratio and diffuser divergent angle have a small effect on bubble diameter distribution and average bubble diameter for the range of the throat water velocities used in this study.


Author(s):  
M. F. Mohamed ◽  
M. Behnia ◽  
S. King ◽  
D. Prasad

Cross ventilation is a more effective ventilation strategy in comparison to single-sided ventilation. In the NSW Residential Flat Design Code1 (RFDC) the majority of apartments are required to adopt cross ventilation. However, in the case of studio and one-bedroom apartments, it is acknowledged that single-sided ventilation may prevail. Deep plan studio and one-bedroom apartments may achieve lower amenity of summer thermal comfort and indoor air quality where mechanical ventilation is not provided by air conditioning. Since compliance with the code may allow up to 40% of apartments in a development in Sydney to be single sided, it is important to understand the natural ventilation performance of such apartments. The objective of this paper is to investigate the natural ventilation potential in single-sided ventilated apartments to improve indoor air quality and thermal comfort. This investigation includes simulating various facade treatments involving multiple opening and balcony configurations. Balcony configurations are included in this study because, in Sydney, a balcony is a compulsory architectural element in any apartment building. The study uses computational fluid dynamics (CFD) software to simulate and predict the ventilation performance of each apartment configuration. This study suggests that properly configured balconies and openings can significantly improve indoor ventilation performance for enhanced indoor air quality and thermal comfort, by optimizing the available prevailing wind. However, it is important to note that inappropriately designed fac¸ade treatments also could diminish natural ventilation performance.


2014 ◽  
Vol 11 (6) ◽  
Author(s):  
Paolo Sala ◽  
Paola Gallo Stampino ◽  
Giovanni Dotelli

This work is part of a project whose final aim is the realization of an auxiliary power fuel cell generator. It was necessary to design and develop bipolar plates that would be suitable for this application. Bipolar plates have a relevant influence on the final performances of the entire device. A gas leakage or a bad management of the water produced during the reaction could be determinant during operations and would cause the failure of the stack. The development of the bipolar plates was performed in different steps. First, the necessity to make an esteem of the dynamics that happen inside the feeding channels led to perform analytical calculations. The values found were cross-checked performing a computational fluid dynamics (CFD) simulation; finally, it was defined the best pattern for the feeding channels, so that to enhance mass transport and achieve the best velocity profile. The bipolar plates designed were machined and assembled in a laboratory scale two cells prototype stack. Influences of the temperature and of the humidity were evaluated performing experiments at 60 deg and 70 deg and between 60% and 100% of humidity of the reactant gasses. The best operating point achieved in one of these conditions was improved by modifying the flow rates of the reactant, in order to obtain the highest output power, and it evaluated the reliability of the plates in experiments performed for longer times, at fixed voltages.


2021 ◽  
pp. petgeo2020-062
Author(s):  
Jingtao Zhang ◽  
Haipeng Zhang ◽  
Donghee Lee ◽  
Sangjin Ryu ◽  
Seunghee Kim

Various energy recovery, storage, conversion, and environmental operations may involve repetitive fluid injection and, thus, cyclic drainage-imbibition processes. We conducted an experimental study for which polydimethylsiloxane (PDMS)-based micromodels were fabricated with three different levels of pore-space heterogeneity (coefficient of variation, where COV = 0, 0.25, and 0.5) to represent consolidated and/or partially consolidated sandstones. A total of ten injection-withdrawal cycles were applied to each micromodel at two different flow rates (0.01 and 0.1 mL/min). The experimental results were analyzed in terms of flow morphology, sweep efficiency, residual saturation, the connection of fluids, and the pressure gradient. The pattern of the invasion and displacement of nonwetting fluid converged more readily in the homogeneous model (COV = 0) as the repetitive drainage-imbibition process continued. The overall sweep efficiency converged between 0.4 and 0.6 at all tested flow rates, regardless of different flow rates and COV in this study. In contrast, the effective sweep efficiency was observed to increase with higher COV at the lower flow rate, while that trend became the opposite at the higher flow rate. Similarly, the residual saturation of the nonwetting fluid was largest at COV = 0 for the lower flow rate, but it was the opposite for the higher flow rate case. However, the Minkowski functionals for the boundary length and connectedness of the nonwetting fluid remained quite constant during repetitive fluid flow. Implications of the study results for porous media-compressed air energy storage (PM-CAES) are discussed as a complementary analysis at the end of this manuscript.Supplementary material: Figures S1 and S2 https://doi.org/10.6084/m9.figshare.c.5276814.Thematic collection: This article is part of the Energy Geoscience Series collection available at: https://www.lyellcollection.org/cc/energy-geoscience-series


2020 ◽  
pp. 1420326X2092552
Author(s):  
Yang Zhang ◽  
Wenxuan Yu ◽  
Youli Li ◽  
Han Li

In this article, a comparative study on the outdoor air pollutant prevention and indoor thermal comfort for different types of ventilation was carried out. Both objective experiment, subjective experiment and computational fluid dynamics (CFD) simulation were conducted to investigate the differences in air pollutant prevention and thermal comfort between four common ventilation methods, namely supplying on the ceiling and returning on the ceiling (SC-RC), supplying on the ceiling and returning on the side wall (SC-RSW), supplying on the side wall and returning on the ceiling (SSW-RC), and supplying on the side wall and returning on the side wall (SSW-RSW). Results show that SSW-RSW can provide the highest indoor air quality according to the indoor average PM2.5 concentration. Overall thermal sensation was introduced to evaluate the indoor comfort under the four ventilation methods. The voting results show that the indoor thermal comfort can be enhanced by 29–36% under SSW-RSW and SSW-RC. Therefore, SSW-RSW is more suitable for providing a healthy and comfortable indoor environment.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 595 ◽  
Author(s):  
Guiyue Kou ◽  
Xinghu Li ◽  
Yan Wang ◽  
Mouyou Lin ◽  
Yuping Zeng ◽  
...  

The airflow dynamics observed during a cough process in a CT-scanned respiratory airway model were numerically analyzed using the computational fluid dynamics (CFD) method. The model and methodology were validated by a comparison with published experimental results. The influence of the cough peak flow rate on airflow dynamics and flow distribution was studied. The maximum velocity, wall pressure, and wall shear stress increased linearly as the cough peak flow increased. However, the cough peak flow rate had little influence on the flow distribution of the left and right main bronchi during the cough process. This article focuses on the mathematical and numerical modelling for human cough process in bioengineering.


Author(s):  
Zunce Wang ◽  
Sen Li ◽  
Fengxia Lv ◽  
Yan Xu ◽  
Jinlong Zhang

The technology of Down-hole Gas Liquid Separation and Water Re-injection (DGLSWR) is an economical and effective method to solve gas well fluid accumulation. The separation performance of designed Down-hole Gas Liquid Separator (DGLS) is very important for DGLSWR systems applications. The principle of work and Characteristics of DGLSWR systems are introduced in this paper. Separation performance of DGLS was studied using computational fluid dynamics (CFD) simulation combining laboratory experiment. Relations of main operating parameters, such as flow rate and gas liquid ratio with pressure drop were studied. The effect of flow rate, gas liquid ratio and main structural parameters such as cone angle and exhaust on DGLS separation performance was also studied. Appropriate structure and operating parameters were determined. Field tests indicated satisfactory results as well.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2179
Author(s):  
Jonathan Graciano-Uribe ◽  
Toni Pujol ◽  
Jaume Puig-Bargués ◽  
Miquel Duran-Ros ◽  
Gerard Arbat ◽  
...  

The small open area available at the slots of underdrains in pressurized granular bed filters for drip irrigation implies: (1) the existence of a region with non-uniform flow, and (2) local values of modified particle Reynolds number >500. These flow conditions may disagree with those accepted as valid for common pressure drop-flow rate correlations proposed for packed beds. Here, we carried out detailed computational fluid dynamics (CFD) simulations of a laboratory filter to analyze the results obtained with five different equations of head losses in porous media: (1) Ergun, (2) Darcy-Forchheimer, (3) Darcy, (4) Kozeny-Carman and (5) power function. Simulations were compared with experimental data at different superficial velocities obtained from previous studies. Results for two silica sand media indicated that all equations predicted total filter pressure drop values within the experimental uncertainty range when superficial velocities <38.3 m h−1. At higher flow rates, Ergun equation approximated the best to the observed results for silica sand media, being the expression recommended. A simple analytical model of the pressure drop along flow streamlines that matched CFD simulation results was developed.


2006 ◽  
Vol 118 ◽  
pp. 363-368 ◽  
Author(s):  
Nai Lu Chen ◽  
Wei Min Zhang ◽  
Qiang Li ◽  
Chang Yin Gao ◽  
Bo Liao ◽  
...  

In order to investigate the flow rate distribution and improve the flow rate uniformity of the quenchant in a quench tank, the ultrasonic Doppler velocimeter (UDV) was used to measure the flow rate of quenchant with agitation, and then a computational fluid dynamics (CFD) simulation was carried out to simulate the flow rate distribution without / with flow baffles. According to the CFD simulation results, the structures and positions of flow baffles in the draft-tube were optimized to obtain the uniform flow rate distribution in the quench zone, which were verified by experiments as well. The simulation and experimental results show that the UDV is suitable for measuring the flow rate of a large-size quench tank. This research provided a solid foundation for optimizing the structure design of flow baffles in production quench tanks.


Sign in / Sign up

Export Citation Format

Share Document