A Transcritical CO2 Rankine Cycle With LNG Cold Energy Utilization and Liquefaction of CO2 in Gas Turbine Emission

Author(s):  
Meibin Huang ◽  
Wensheng Lin ◽  
Hongming He ◽  
Anzhong Gu

A novel transcritical Rankine cycle is presented in this paper. This cycle adopts CO2 as its working fluid, with exhaust from a gas turbine as its heat source and LNG as its cold sink. With CO2 working transcritically, large temperature difference for the Rankine cycle is realized. Moreover, the CO2 in the gas turbine exhaust is further cooled and liquefied by LNG after transferring heat to the Rankine cycle. In this way, not only the cold energy is utilized, but also a large part of the CO2 from burning of the vaporized LNG is recovered. In this paper, the system performance of this transcritical cycle is calculated. The influences of the highest cycle temperature and pressure to system specific work, exergy efficiency and liquefied CO2 mass flow rate are analyzed. The exergy loss in each of the heat exchangers is also discussed. It turns out that this kind of CO2 cycle is energy-conservative and environment-friendly.

2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Wensheng Lin ◽  
Meibin Huang ◽  
Hongming He ◽  
Anzhong Gu

A novel transcritical Rankine cycle is presented in this paper. This cycle adopts CO2 as its working fluid with exhaust from a gas turbine as its heat source and liquefied natural gas (LNG) as its cold sink. With CO2 working transcritically, large temperature difference for the Rankine cycle is realized. Moreover, the CO2 in the gas turbine exhaust is further cooled and liquefied by LNG after transferring heat to the Rankine cycle. In this way, not only is the cold energy utilized but also a large part of the CO2 is recovered from burning of the vaporized LNG. In this paper, the system performance of this transcritical cycle is calculated. The influences of the highest cycle temperature and pressure to system specific work, exergy efficiency, and liquefied CO2 mass flow rate are analyzed. The exergy loss in each of the heat exchangers is also discussed. It turns out that this kind of CO2 cycle is energy-conservative and environment-friendly.


Author(s):  
Yujie Xu ◽  
Hongguang Jin ◽  
Rumou Lin ◽  
Wei Han

A partial gasification combined cycle with CO2 recovery is proposed in this paper. Partial gasification adopts cascade conversion of the composition of coal. Active composition of coal is simply gasified, while inactive composition, that is char, is burnt in a boiler. Oxy-fuel combustion of syngas produces only CO2 and H2O, so the CO2 can be separated through cooling the working fluid. This decreases the amount of energy consumption to separate CO2 compared with conventional methods. The novel system integrates the above two key technologies by injecting steam from a steam turbine into the combustion chamber of a gas turbine to combine the Rankine cycle with the Brayton cycle. The thermal efficiency of this system will be higher based on the cascade utilization of energy level. Compared with the conventional integrated gasification combined cycle (IGCC), the compressor of the gas turbine, heat recovery steam generator (HRSG) and gasifier are substituted for a pump, reheater, and partial gasifier, so the system is simplified obviously. Furthermore, the novel system is investigated by means of energy-utilization diagram methodology and provides a simple analysis of their economic and environmental performance. As a result, the thermal efficiency of this system may be expected to be 45%, with CO2 recovery of 41.2%, which is 1.5–3.5% higher than that of an IGCC system. At the same time, the total investment cost of the new system is about 16% lower than that of an IGCC. The comparison between the partial gasification technology and the IGCC technology is based on the two representative cases to identify the specific feature of the proposed system. The promising results obtained here with higher thermal efficiency, lower cost, and less environmental impact provide an attractive option for clean-coal utilization technology.


Author(s):  
Yujie Xu ◽  
Hongguang Jin ◽  
Rumou Lin ◽  
Wei Han

A partial gasification combined cycle with CO2 recovery is proposed in this paper. Partial gasification adopts cascade conversion of the composition of coal. Active composition of coal is simply gasified, while inactive composition, that is char, is burnt in a boiler. Oxy-fuel combustion of syngas produces only CO2 and H2O, so the CO2 can be separated through cooling the working fluid. This decreases the amount of energy consumed to separate CO2 compared with conventional methods. The novel system integrates the above two key technologies, by injecting steam from a steam turbine into the combustion chamber of a gas turbine, to combine the Rankine cycle with the Brayton cycle. The thermal efficiency of this system will be higher based on the cascade utilization of energy level. Compared to the conventional IGCC, the compressor of the gas turbine, HRSG and gasifier are substituted for a pump, reheater and partial gasifier, so the system is simplified obviously. Furthermore, the novel system is investigated by means of EUD (Energy-Utilization Diagram) methodology and provides a simple analysis of their economic and environmental performance. As a result, the thermal efficiency of this system may be expected to be 46%, with recovery of 50% of CO2, which is 3–5% higher than that of an IGCC system. At the same time, the total investment cost of the new system is about 21.5% lower than that of an IGCC. The promising results obtained here with higher thermal efficiency, lower cost and less environmental impact provide an attractive option for clean coal utilization technology.


Author(s):  
Michel D. Ninacs ◽  
Rodney P. Bell

This paper discusses the methods used to derive an improved design for gas turbine exhaust duct expansion joints. Typically these joints are subjected to very rapid increase in internal exhaust gas temperatures that result in large temperature differentials within the joint structures. The thermal gradients can cause stress levels in excess of yield and when the turbine is used intermittently, such as peaking power units would be, the net result is crack propagation and gas leakage.


Author(s):  
Anthony J. B. Jackson ◽  
Alcides Codeceira Neto ◽  
Matthew W. Whellens ◽  
Harry Audus

The world’s main atmospheric “greenhouse gas” is carbon dioxide (CO2). The CO2 content of the atmosphere continues to rise due to increasing world demand for energy, and thus further means are needed to achieve its abatement. Most gas turbine powered electricity generating plants use hydro-carbon fuels and this inevitably produces CO2 in the engine exhaust. This paper discusses a scheme for concentrating the gas turbine exhaust CO2, thus facilitating its extraction. The scheme is a gas turbine operating synchronously in closed cycle, with CO2 as the working fluid. The additional CO2 and water produced in the combustion process are removed continuously. CO2 and air have substantially different gas properties. This significantly affects the performance of the gas turbine. It is shown that any gas turbine designed to use air, and operating synchronously, would need considerable modifications to its compressor and combustion systems to use carbon dioxide as its working fluid.


2018 ◽  
Vol 67 ◽  
pp. 04032 ◽  
Author(s):  
Adhicahyo Prabowo ◽  
Sutrasno Kartohardjono

Cryogenic Power Generation or commonly called Cryopower is the generation of electricity by utilizing cold energy which one is produced at the LNG (liquefied natural gas) Regasification Terminal. Cold energy utilization has been applied in several countries, especially in Japan. In Indonesia, the regasification terminal has been built few, but in the future according to the Government of Indonesia's plan, some natural gas/LNG power plants will be built to meet the national electricity needs. It requires gas infrastructure, one of which is the regasification terminal. The aim of this study is to evaluate the effects of LNG flowrate on working fluid and cooling water flowrates as well as power needed and produced in the combine direct expansion and Rankine cycle processes. The flowrates and power calculations were conducted using UNISIM R390.1. Simulation results showed that the working fluid and cooling water flowrates increase with increasing LNG flowrate. The increased in the working fluid and cooling water flowrates also increased the power needed by the pumps and power produced by the turbines. Overall, the net power produced from the combine cycle increased with increasing the LNG flowrate.


2020 ◽  
Vol 64 (4) ◽  
pp. 342-349 ◽  
Author(s):  
Sindu Daniarta ◽  
Attila R. Imre

"Cold energy" refers to a potential to generate power by utilizing the exergy of cryogenic systems, like Liquefied Natural Gas (LNG), using it as the cold side of a thermodynamic cycle, while the hot side can be even on the ambient temperature. For this purpose, the cryogenic Organic Rankine Cycle (ORC) is one type of promising solution with comprehensive benefits to generate electricity. The performance of this cycle depends on the applied working fluid. This paper focuses on the applicability of some natural working fluids and analyzes their performance upon cold energy utilization in the LNG regasification system. An alternative method, the cryogenic Trilateral Flash Cycle (TFC), is also presented here. The selection of working fluid is a multi-step process; the first step uses thermodynamic criteria, while the second one is addressing environmental and safety issues. It will be shown that in LNG regasification systems, single cryogenic ORC performs higher net output power and net efficiency compared to single cryogenic TFC. Propane as working fluid in the single cryogenic ORC generates the highest net output power and net efficiency. It is demonstrated, that concerning 26 novel LNG terminals, a net power output around 320 MW could be recovered from the cold energy by installing a simple cycle, namely a single-step cryogenic ORC unit using propane as working fluid.


Author(s):  
B. M. Burnside

The concept of the dual pressure steam/pure organic hybrid immiscible liquid cycle applied to recover exhaust heat from gas turbines is extended to include organic mixtures. Thermodynamics of the resulting ternary working fluid cycle is presented. For the cycle arrangement analysed it is calculated that the ternary steam/nonane/decane cycle with the organic very nonane rich produces about 2% more work than the corresponding all steam cycle for a typical gas turbine exhaust temperature. It is estimated that this advantage can be raised to about 4% by adding additional heaters at the stack end of the heat recovery generator. The analysis shows that it is unnecessary to use a pure alkane organic. A mixture containing up to about 5% of alkanes with higher boiling points than nonane is adequate.


Sign in / Sign up

Export Citation Format

Share Document