Finite Element Modeling of Concentrating Solar Collectors for Evaluation of Gravity Loads, Bending, and Optical Characterization

Author(s):  
Joshua M. Christian ◽  
Clifford K. Ho

Understanding the effects of gravity and wind loads on concentrating solar power (CSP) collectors is critical for performance calculations and developing more accurate alignment procedures and techniques. This paper presents a rigorous finite-element model of a parabolic trough collector that is used to determine the impact of gravity loads on bending and displacements of the mirror facets and support structure. The geometry of the LUZ LS-2 parabolic trough collector was modeled using SolidWorks, and gravity-induced loading and displacements were simulated in SolidWorks Simulation. The model of the trough collector was evaluated in two positions: the 90° position (mirrors facing upward) and the 0° position (mirrors facing horizontally). The slope errors of the mirror facet reflective surfaces were found by evaluating simulated angular displacements of node-connected segments along the mirror surface. The ideal (undeformed) shape of the mirror was compared to the shape of the deformed mirror after gravity loading. Also, slope errors were obtained by comparing the deformed shapes between the 90° and 0° positions. The slope errors resulting from comparison between the deformed vs. undeformed shape were as high as ∼2 mrad, depending on the location of the mirror facet on the collector. The slope errors resulting from a change in orientation of the trough from the 90° position to the 0° position with gravity loading were as high as ∼3 mrad, depending on the location of the facet.

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5607
Author(s):  
Gabriele Guidi ◽  
Umair Shafqat Malik ◽  
Andrea Manes ◽  
Stefano Cardamone ◽  
Massimo Fossati ◽  
...  

In concentrated solar power technology, the precise shape of the reflective surfaces is crucial for efficiency. Considering the geometry and size of a parabolic trough collector, measuring the actual shape is not trivial and some techniques can only be adopted during the assembly operations, evaluating only the manufacturing and alignment processes. The method proposed and tested in this work exploits a laser scanner-based three-dimensional digitization technique that can be used without any marker or other tools, and is attached to the structure. This technique is particularly suitable for assessing the behavior and the optical efficiency of the collectors under load and for validating a finite element model of the structure. The method defines the shape of the parabolic surface by collecting a 3D point cloud of the parabolic surface using a laser scanner. The measured form can then be compared with the ideal shape obtained from a finite element analysis of the structure subject to the gravity field. The comparison can also be performed when the collector is loaded by known forces or torques, with the finite element model reproducing the actual loading scenario. The object of the case study of this work was a 12 m wide full-scale prototype trough collector manufactured at the Politecnico di Milano. The uncertainty of the 3D measurements, acquiring twelve images in different positions, was verified to be less than 3.6 mm.


Author(s):  
Joshua M. Christian ◽  
Clifford K. Ho

Predicting the structural and optical performance of concentrating solar power (CSP) collectors is critical to the design and performance of CSP systems. This paper presents a performance analysis which utilizes finite-element models and ray-tracing of a parabolic trough collector. The finite-element models were used to determine the impact of gravity loads on displacements and rotations of the facet surfaces, resulting in slope error distributions across the reflective surfaces. The geometry of the LUZ LS-2 parabolic trough collector was modeled in SolidWorks, and the effects of gravity on the reflective surfaces are analyzed using SolidWorks Simulation. The ideal mirror shape, along with the 90° and 0° positions (with gravity deformation) were evaluated for the LS-2. The ray-tracing programs APEX and ASAP are used to assess the impact of gravity deformations on optical performance. In the first part of the analysis, a comprehensive study is performed for the parabolic trough to evaluate a random slope error threshold (i.e., induced by manufacturing errors and assembly processes) above which additional slope errors caused by gravity sag decrease the intercept factor of the system. The optical performance of the deformed shape of the collector (in both positions) is analyzed with additional induced slope errors ranging from zero up to 1° (17.44 mrad). The intercept factor for different solar incident angles found from ray-tracing is then compared to empirical data to demonstrate if the simulations provide consistent answers with experimental data.


Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 209
Author(s):  
Andrea Gilioli ◽  
Francesco Cadini ◽  
Luca Abbiati ◽  
Giulio Angelo Guido Solero ◽  
Massimo Fossati ◽  
...  

Nowadays the design of large-scale structures can be effectively improved by the adoption of numerical models. Even if experimental tests still play a fundamental role, a methodological approach that combines experimental testing and modelling technique can significantly improve the understanding of the matter. This, in fact, would result in a more reliable optimization process, drastically reducing efforts and uncertainties towards the implementation of the final product. The present work deals with the development of a finite element model for the analysis of a full-scale prototype of an innovative parabolic trough collector. The collector is analysed under several load conditions in order to evaluate its structural behaviour. Each load configuration is also numerically reproduced. Moreover, it is demonstrated that the model is capable of reproducing both the global (stiffness) and local (strain state) behaviour of the structure. Specifically, the comparison between experimental data and numerical results show a good agreement for the global parameter torsional stiffness. Local strain values are also well reproduced in high-stressed zone. Thus, the model can be used as a reliable “virtual tool” for designers to evaluate the suitability of layout modifications, thereby replacing and reducing the amount of commonly needed experimental tests and, consequently, reducing time and costs. Finally, an example of the potentiality of the finite element model adopted for a computer-aided engineering approach is shown to determine the most promising solution for increasing the torsional stiffness of the trough, while simultaneously limiting the required experimental tests.


2019 ◽  
Vol 88 (2) ◽  
pp. 20902
Author(s):  
O. Achkari ◽  
A. El Fadar

Parabolic trough collector (PTC) is one of the most widespread solar concentration technologies and represents the biggest share of the CSP market; it is currently used in various applications, such as electricity generation, heat production for industrial processes, water desalination in arid regions and industrial cooling. The current paper provides a synopsis of the commonly used sun trackers and investigates the impact of various sun tracking modes on thermal performance of a parabolic trough collector. Two sun-tracking configurations, full automatic and semi-automatic, and a stationary one have numerically been investigated. The simulation results have shown that, under the system conditions (design, operating and weather), the PTC's performance depends strongly on the kind of sun tracking technique and on how this technique is exploited. Furthermore, the current study has proven that there are some optimal semi-automatic configurations that are more efficient than one-axis sun tracking systems. The comparison of the mathematical model used in this paper with the thermal profile of some experimental data available in the literature has shown a good agreement with a remarkably low relative error (2.93%).


Author(s):  
Kevin Darques ◽  
Abdelmounaïm Tounzi ◽  
Yvonnick Le-menach ◽  
Karim Beddek

Purpose This paper aims to go deeper on the analysis of the shaft voltage of large turbogenerators. The main interest of this study is the investigation process developed. Design/methodology/approach The analysis of the shaft voltage because of several defects is based on a two-dimensional (2D) finite element modeling. This 2D finite element model is used to determine the shaft voltage because of eccentricities or rotor short-circuit. Findings Dynamic eccentricities and rotor short circuit do not have an inherent impact on the shaft voltage. Circulating currents in the stator winding because of defects impact the shaft voltage. Originality/value The original value of this paper is the investigation process developed. This study proposes to quantify the impact of a smooth stator and then to explore the contribution of the real stator winding on the shaft voltage.


Author(s):  
Ramakrishnan Maruthayappan ◽  
Hamid M. Lankarani

Abstract The behavior of structures under the impact or crash situations demands an efficient modeling of the system for its behavior to be predicted close to practical situations. The various formulations that are possible to model such systems are spring mass models, finite element models and plastic hinge models. Of these three techniques, the plastic hinge theory offers a more accurate model compared to the spring mass formulation and is much simpler than the finite element models. Therefore, it is desired to model the structure using plastic hinges and to use a computational program to predict the behavior of structures. In this paper, the behavior of some simple structures, ranging from an elementary cantilever beam to a torque box are predicted. It is also shown that the plastic hinge theory is a reliable method by comparing the results obtained from a plastic hinge model of an aviation seat structure with that obtained from a finite element model.


2014 ◽  
Vol 501-504 ◽  
pp. 578-582
Author(s):  
Liang Hsu ◽  
Ming Long Hu ◽  
Jun Zhi Zhang

Considering secondary load, simulate the axial compression process of reinforced concrete square columns strengthened with igneous rock fiber reinforced polymer with Abaqus. Make a comparison between the simulation result and experimental result. The finite-element model can simulate the experiment preferably. And the impact of lagged strain is very obvious.


2013 ◽  
Vol 579-580 ◽  
pp. 507-511
Author(s):  
Yi Xiang Liu ◽  
Yong Mei Wang

This paper firstly starting mechanism of vibration and noise from gear, gear noise mechanism is explained, and analyze the factors and the impact of noise on the gear reducer. Secondly, the establishment of a complete solid model of gear reducer and reducer model for finite element model, the reduction gear box gear reducer of modal analysis and finite element modal calculation, and points out the dynamic analysis of structure, size and weight factor is proportional to the reciprocal of the modal frequencies of each mode is the with the frequency is low, that is, the greater the weight. Once again, the main measure of load and control of gear noise of gear is analyzed, including the calculation, for exciting force reduction gear reducer gear load computation. The analysis and calculation are the theoretical basis of gear structure design and its performance evaluation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jiaxiang Li ◽  
Biao Wang ◽  
Jian Sun ◽  
Shuhong Wang ◽  
Xiaohong Zhang ◽  
...  

Ice shedding causes transmission lines to vibrate violently, which induces a sharp increase in the longitudinal unbalanced tension of the lines, even resulting in the progressive collapse of transmission towers in serious cases, which is a common ice-based disaster for transmission tower-line systems. Based on the actual engineering characteristics of a 500 kV transmission line taken as the research object, a finite element model of a two-tower, three-line system is established by commercial ANSYS finite element software. In the modeling process, the uniform mode method is used to introduce the initial defects, and the collapse caused by ice shedding and its influencing parameters are systematically studied. The results show that the higher the ice-shedding height is, the greater the threat of ice shedding to the system; furthermore, the greater the span is, the shorter the insulator length and the greater the dynamic response of the line; the impact of ice shedding should be considered in the design of transmission towers.


10.29007/b1th ◽  
2022 ◽  
Author(s):  
Cong Hoa Vu ◽  
Ngoc Thien Ban Dang

Today, freight is an extremely important industry for the world we are living. Fast transportation, large volume...will optimize the cost, time and effort. Besides, ensuring the products safety is a matter of concern. During transporting, it is inevitable that the vibration caused by the engine, rough road surface...the cargo inside can be damaged. Automobile industries have prime importance to vibration testing. Sine vibration testing is performed when we have been given with only one frequency at given time instant. Trend to perform random vibration testing has been increased in recent times. As random vibration considers all excited frequencies in defined spectrum at known interval of time, it gives real-time data of vibration severities. The vibration severity is expressed in terms of Power Spectral Density (PSD). KLT box is an industrial stacking container conforming to the VDA 4500 standard that was defined by German Association of the Automotive Industry (VDA) for the automotive industry. The aim of this paper is study about random vibration and power spectral density analysis, how it can be used to predict the impact of hash road to the KLT box on container / truck during transportation. Finite element model is developed in ANSYS, modal analysis and random vibration analysis were done.


Sign in / Sign up

Export Citation Format

Share Document