Analysis of Carbon Dioxide Emission Reductions From Energy Efficiency Upgrades in Consideration of Climate Change and Renewable Energy Policy Initiatives Using eQUEST

Author(s):  
Anthony Sclafani

In January 2008 the Governor of Hawaii announced the Hawaii Clean Energy Initiative; an initiative that aims to have at least 70 percent of Hawaii’s power come from clean energy by 2030 [4]. In July 2009, the Hawaii Department of Accounting and General Services awarded NORESCO, an energy service company, a $33.9M contract to improve the energy efficiency of 10 government buildings. The avoided utility cost of the energy and water savings from the improvements is the project funding mechanism. The energy savings realized by the project will reduce carbon dioxide emissions associated with utility power generation. However, as renewable energy becomes a larger portion of the utility generation profile through the Hawaii Clean Energy Initiative, the carbon dioxide emissions reductions from specific energy efficiency measures may erode over time. This work presents a method of analysis to quantify the carbon dioxide emissions reduction over the life of a project generated by energy efficiency upgrades that accounts for both the impact of policy initiatives and climate change using DOE-2/eQUEST. The analysis is based on the fact that HVAC energy usage will vary with climate changes and that carbon dioxide emission reductions will vary with both energy savings and the corresponding utility’s power generation portfolio. The energy savings related to HVAC system energy efficiency improvements are calculated over the life of a 20 year performance contract using a calibrated DOE-2/eQUEST model of an existing building that utilizes weather data adjusted to match the predictions of the Intergovernmental Panel on Climate Change. The carbon dioxide emissions reductions are calculated using the energy savings results and a projection of the implementation of the Hawaii Clean Energy Initiative. The emissions reductions are compared with other analysis methods and discussed to establish more refined expectations of the impact of energy efficiency projects in context with climate changes and policy initiatives.

2021 ◽  
pp. 17-23
Author(s):  
Szira Zoltán ◽  
Bárdos Kinga Ilona ◽  
Alghamdi Hani ◽  
Enkhjav Tumentsetseg ◽  
Erika Varga

2019 was Earth's second warmest year since 1850. In 2019 the global mean temperature was cooler than in 2016, but warmer than any other year explicitly measured. Consequently, 2016 is still the warmest year in historical observation history. Year-to-year rankings are likely to reflect natural fluctuations in the short term, but the overall pattern remains consistent with a long-term global warming trend. This would be predicted from global warming caused by greenhouse gases, temperature increase across the globe is broadly spread, impacting almost all areas of land and oceans. Climate change" and "global warming" are often used interchangeably but are of distinct significance. Global warming is the long-term heating of the Earth's climate system observed since the pre-industrial period as a result of human activities, mainly the combustion of fossil fuel, which raises the heat-trapping greenhouse gas levels in the Earth's air. The term is often used interchangeably with the term climate change, as the latter applies to warming caused both humanly and naturally, and the impact it has on our planet. This is most generally calculated as the average increase in global surface temperature on Earth. Carbon dioxide emission is one of the main reasons for global warming. Since the Industrial Revolution, human sources of carbon dioxide emissions have been growing. Human activities such as the burning of oil, coal and gas, as well as deforestation are the primary cause of the increased carbon dioxide concentrations in the atmosphere. In our research, let’s examine the relationship between the amount of carbon dioxide emissions and the GDP/capita in developed and developing countries.


Author(s):  
Panji Tirta Nirwana Putra ◽  
Lilis Yuliati ◽  
Endah Kurnia Lestari

Climate change is a phenomenon of environmental damage due to the increased intensity of carbon dioxide emissions in the atmosphere, which causes the surface temperature of the earth. The carbon dioxide emission is a form of environmental degradation caused by economic activities. This study analyzed the relationship of macroeconomic variables and the carbon dioxide emission in each of the four ASEAN countries (Indonesia, Malaysia, the Philippines, and Thailand). The used of macroeconomic variables (GDP, trade openness, energy consumption, and the exchange rate) is shown to explain the carbon dioxide emission. In this study, Vector Auto regression Exogenous (VARX) method is used to analyze the impact of economic activities on the movement of carbon dioxide emissions. The data used time series with a vulnerable time of the year 1981-2013. The estimation results from these studies show that the GDP variable has the greatest contribution to the dynamics of carbon dioxide emissions in each ASEAN 4 countries. This empirical finding suggests that economic activity has an influence on the growth of carbon dioxide emissions.


2020 ◽  
Vol 2 (4) ◽  
pp. 492-512
Author(s):  
Simon P. Philbin

Carbon capture and utilization (CCU) is the process of capturing unwanted carbon dioxide (CO2) and utilizing for further use. CCU offers significant potential as part of a sustainable circular economy solution to help mitigate the impact of climate change resulting from the burning of hydrocarbons and alongside adoption of other renewable energy technologies. However, implementation of CCU technologies faces a number of challenges, including identifying optimal pathways, technology maturity, economic viability, environmental considerations as well as regulatory and public perception issues. Consequently, this research study provides a critical analysis and evaluation of the technology pathways for CCU in order to explore the potential from a circular economy perspective of this emerging area of clean technology. This includes a bibliographic study on CCU, evaluation of carbon utilization processes, trend estimation of CO2 usage as well as evaluation of methane and methanol production. A value chain analysis is provided to support the development of CCU technologies. The research study aims to inform policy-makers engaged in developing strategies to mitigate climate change through reduced carbon dioxide emission levels and improve our understanding of the circular economy considerations of CCU in regard to production of alternative products. The study will also be of use to researchers concerned with pursuing empirical investigations of this important area of sustainability.


Author(s):  
Jarod C. Kelly ◽  
Deepak Sivaraman ◽  
Gregory A. Keoleian

Many studies that examine the impact of renewable energy installations on avoided carbon-dioxide utilize national, regional or state averages to determine the predicted carbon-dioxide offset. The approach of this computational study was to implement a dispatching strategy in order to determine precisely which electrical facilities would be avoided due to the installation of renewable energy technologies. This study focused on a single geographic location for renewable technology installation, San Antonio, Texas. The results indicate an important difference between calculating avoided carbon-dioxide when using simple average rates of carbon-dioxide emissions and a dispatching strategy that accounts for the specific electrical plants used to meet electrical demands. The avoided carbon-dioxide due to renewable energy technologies is overestimated when using national, regional and state averages. This occurs because these averages include the carbon-dioxide emission factors of electrical generating assets that are not likely to be displaced by the renewable technology installation. The study also provides a comparison of two specific renewable energy technologies: photovoltaics (PV) and wind turbines. The results suggest that investment in PV is more cost effective for the San Antonio location. While the results are only applicable to this location, the methodology is useful for evaluating renewable technologies at any location.


2021 ◽  
Vol 2102 (1) ◽  
pp. 012007
Author(s):  
A A Macgregor ◽  
R J Gallardo ◽  
J A Gómez Camperos

Abstract Electric energy is one of the types of energy that is most present in the activities that human beings carry out daily, hence the importance of making efficient consumption of this resource, especially that which is done in homes, since energy savings represent a reduction in carbon dioxide emissions. Given that the construction sector can represent up to 39% of the carbon dioxide emissions emitted into the atmosphere, this research analyzes the impact generated by the construction and use of a single-family home, with the use of DesignBuilder software. Initially, a model was made under traditional conditions, thus determining where the greatest heat gains were concentrated, followed by a second model under adjusted conditions. A life cycle analysis was made under conditions adjusted to a period of 100 years and the submission of the two conditions to the choosing by advantages method. The results showed that the changes can reduce annual energy consumption by up to 66% and recover the investment in 10 years. Finally, the analysis of the life cycle determined that for a period of 100 years the emissions are 18679.67 equivalent tonnes of carbon dioxide.


2014 ◽  
Vol 665 ◽  
pp. 517-520
Author(s):  
Qiang Zhao ◽  
Xiu Mei Li ◽  
Xiang Yu Cui

The research estimates the carbon dioxide emissions of energy consumption from 2003 to 2011 using the method in IPCC national greenhouse gases listing guidance, by adopting the method of Kaya identities and Laspeyres index decomposition technique to analyze the influencing factors and the influencing degree. The result shows that the main factors influencing carbon dioxide emissions are energy structure and per capita GDP, and to develop clean energy, to improve energy structure are important choice to reduce the carbon dioxide emissions of energy consumption, realize low carbon in the future. This research provides an important reference to protect the environment and to promote the sustainable development of economy.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4723
Author(s):  
Carlos Herce ◽  
Enrico Biele ◽  
Chiara Martini ◽  
Marcello Salvio ◽  
Claudia Toro

The implementation of monitoring tools and energy management systems (EnMSs) supports companies in their long-term energy efficiency strategies, and they are essential to analyse the effectiveness of energy performance improvement actions (EPIAs). The first fundamental step towards increasing energy efficiency is the development of energy audits (EAs). EAs provide comprehensive information about the energy usage in a specific facility, identifying and quantifying cost-effective EPIAs. The crucial role of these tools in clean energy transition is remarked by the European Energy Efficiency Directive (EED), which promotes the implementation of EAs and EnMS programmes. The purpose of this work is to better understand the link between EnMSs (specifically ISO 50001) and EAs in the EED Article 8 implementation in two industrial and two tertiary sectors in Italy. Moreover, the impact of company size, energy monitoring systems, and EnMSs on planned and/or implemented EPIAs is analysed. Our findings show that, albeit the complexity of the variables involved in energy efficiency gap, the “energy savings/company” and “EPIA/site” ratios are higher in enterprises with an EnMS and monitoring system. Thus, a correct energy audit must always be accompanied by a specific monitoring plan if it is to be effective and useful to the company decision maker.


2018 ◽  
Vol 2 (4) ◽  
pp. 39
Author(s):  
Les Duckers ◽  
Uswatun Hasanah

Aim:  In this paper we demonstrate an outline strategy for Indonesia to move its electrical generation from fossil fuels to renewable sources in order to reduce carbon dioxide emissions whilst avoiding excessive costs. The modelling here is based on assumed present fossil fuel generating plants.Design / Research methods:  We have modelled a representative electrical generation system based on burning coal, oil and gas, and by replacing retiring stations with photovoltaic cells and wind turbines we have considered the cost and carbon dioxide implications over a 30 year period. Additionally the modelling is extended to increasing the Indonesian installed electrical capacity.Conclusions / findings:  The results show that Indonesia could meet its carbon dioxide emission reduction targets in an economic way by a phased strategy of introducing renewable energy sources. These results are preliminary and will be refined in a future article where we will include the detail of actual existing power stations, with their capacity and anticipated end of life date.Originality / values of the article: There has been, and continues to be, a general resistance to the adoption of renewable energy. This paper shows  the economic benefit that accompanies carbon dioxide reduction thus presents a new aspect to the consideration of carbon reduction, Implications of the research:Indonesia faces difficulties in providing electricity whilst meeting its climate change obligations. This research points to a viable economic strategy which may not only meet those obligations, but actually increase electrical provision across the country.Key words:  Sustainable development, climate change, carbon emissions, renewable energy JEL: C51,L94,Q01,Q42 Doi:


Author(s):  
Jun-Ki Choi ◽  
Kevin Hallinan ◽  
Kelly Kissock ◽  
Robert Brecha

The main goal of this study is to estimate the community-wide economic and environmental impacts of energy efficiency investment on the local manufacturing using data with different granularity. A systematic framework is developed by using multiple scale/layer of data. Result shows that a $14M investment in HVAC upgrade to reduce energy and cost in the economy of the Montgomery County, Ohio can result in a total local economic impact of $22M, stemming from the $14.5M coming from direct impact, $2.8M coming from indirect impact, and $4.7M coming from induced impacts. Job creation over the investment period yields a total of 106 jobs. Analysis provides insight into the most important types of economic effects to the local industries. From an environmental perspective, short term economy-wide carbon dioxide emissions increase because of the increased community-wide economic activities spurred by the production from local manufacturers and installation of energy efficiency measures, however the resulting energy savings provide continuous carbon dioxide reduction for various target savings.


Sign in / Sign up

Export Citation Format

Share Document