Experimental Study of Condensation in Different 3D Printed Regenerators in a Thermoacoustic Cooler

Author(s):  
Aibek Bekkulov ◽  
Andrew Luthen ◽  
Ben Xu

Abstract Thermoacoustics (TA) deals with the conversion of heat into sound and vice versa. The device that transfers energy from a low temperature reservoir to a high temperature one by utilizing acoustic work is called TA cooler (TAC). The main components of a typical TA device are a resonator, a regenerator (stack of parallel plates) and two heat exchangers. The thermoacoustic phenomenon takes place in the stack when a nonzero temperature gradient imposed along the regenerator (i.e. parallel to the direction of the sound wave propagation) interacts with the sound wave oscillations. The low temperature at the cold of TAC can be used to condense humid water from the air and also reduce the moisture in the air at some humid areas. In the current study, the high intensity sound waves was produced by the speaker to drive a TA cooler to produce cooling power at a cold temperature of around 18°C. The drainage of condensate in the regenerator is the key for the system performance, because if the porous structure will be blocked by the condensate, TA phenomenon cannot take place in the regenerator. This work is dedicated to investigate the effect from temperature gradient created in TAC for condensation enhancement. 3D printer was used to design and fabricate different structures of regenerator, and then the systematic cooling capacity was measured and compared with different designs of regenerators. Energy balance was also discussed for each type of regenerator. The potential application of this investigation can be an autonomous thermoacoustic cooler system for water harvesting in arid areas. This work can be used to evaluate how the TA effect can be affected by the condensation if humid air is used as the working fluid.

2019 ◽  
Vol 142 (5) ◽  
Author(s):  
Aibek Bekkulov ◽  
Andrew Luthen ◽  
Ben Xu

Abstract Thermoacoustics (TA) deals with the conversion of heat into sound and vice versa. The device that transfers energy from a low-temperature reservoir to a high-temperature one by utilizing acoustic work is called TA cooler (TAC). The main components of a typical TAC are a resonator, a porous regenerator (e.g., stack of parallel plates), and two heat exchangers. The thermoacoustic phenomenon takes place in the regenerator where a nonzero temperature gradient is imposed and interacts with the sound wave. The low temperature at the cold end of TAC can be used to condense water from the humid air and also reduce the moisture. In the current study, the sound wave with high intensity was produced to drive a TAC to produce cooling power at a cold temperature around 18 °C, using saturated water vapor as the working fluid. The drainage of condensate in the regenerator is the key to the system’s performance. This work is dedicated to investigate the effect from temperature gradient created in TAC on the condensation enhancement, by adopting three different designs of regenerators. A 3D printer was used to design and fabricate different structures of regenerator, and then, the systematic cooling capacity was tested and compared with different regenerators. This work can be extended to evaluate how the TA effect can be affected by the condensation if humid air is directly used as the working fluid. The potential application of this investigation can be an autonomous TAC system for water harvesting in arid areas.


Author(s):  
Ahmad Najjaran Kheirabadi ◽  
James Freeman ◽  
Alba Ramos Cabal ◽  
Christos N. Markides

Diffusion absorption refrigeration (DAR) cycles enable passive fully thermally-driven refrigeration for off-grid purposes. Typically, DAR units are designed for a given heat supply load and temperature, although real operation inevitably involves unsteady variations in these inputs. In this study, a thermally-driven DAR unit with a nominal cooling capacity of 120 W is connected to an electric heat source. The working fluid is ammonia-water NH3/H2O, with hydrogen (H2) added as an auxiliary gas to keep the system pressure constant and to decrease the partial pressure of the refrigerant (ammonia) in the evaporator. A control unit is used to adjust and measure the input heat-source power applied to the unit. The operating pressure of the system is 20.7 bar, the ambient temperature is 22 °C and the input thermal power is in the range 250 to 700 W. The cooling capacity of the unit and the input heat load are measured simultaneously at different operation conditions. To measure the cooling power, a cold box is constructed around the evaporator, and a second heater is located inside the cold box which sets the cold space temperature equal to that of the ambient. This allows the coefficient of performance (COP) to be evaluated. The COP and cooling capacity of the unit are investigated at part load by varying the heat supply, from which maximum values are obtained (0.28 and 110 W, respectively). Finally, experimental results are compared to the theoretical predictions from a thermodynamic model of a DAR cycle. Once validated, the model is also used to find the properties of the fluid mixture in different states in the DAR cycle.


2013 ◽  
Vol 38 (4) ◽  
pp. 565-570 ◽  
Author(s):  
Bartłomiej Kruk

Abstract Research in termoacoustics began with the observation of the heat transfer between gas and solids. Using this interaction the intense sound wave could be applied to create engines and heat pumps. The most important part of thermoacoustic devices is a regenerator, where press of conversion of sound energy into thermal or vice versa takes place. In a heat pump the acoustic wave produces the temperature difference at the two ends of the regenerator. The aim of the paper is to find the influence of the material used for the construction of a regenerator on the properties of a thermoacoustic heat pump. Modern technologies allow us to create new materials with physical properties necessary to increase the temperature gradient on the heat exchangers. The aim of this paper is to create a regenerator which strongly improves the efficiency of the heat pump.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2703
Author(s):  
Robert Sekret ◽  
Przemysław Starzec

The paper presents the investigation of a prototype cold accumulator using water–ice latent heat for the cold storage process. The concept of the cold accumulator was based on a 200-L-capacity cylindrical storage tank in which spherical capsules filled with water were placed. Beds of polypropylene capsules with diameters of 80 mm, 70 mm, and 60 mm were used in the tests. The cold accumulator operated with a water–air heat pump. Based on the test results, the following parameters were calculated: the cooling capacity, cooling power, energy efficiency of the cold storage, and energy efficiency ratio (EER) of the accumulator. The obtained measurement results were described with mathematical relationships (allowing for measurement error) using criterial numbers and the developed “Research Stand Factor Number” (RSFN) index. It has been found that, for the prototype cold accumulator under investigation, the maximum values of the cooling capacity (17 kWh or 85.3 kWh per cubic meter of the accumulator), energy efficiency (0.99), and EER (4.8) occur for an RSFN of 144·10−4. The optimal conditions for the operation of the prototype cold accumulator were the closest to laboratory tests conducted for a bed with capsules with a diameter of 70 mm and a mass flow of the water–glycol mixture flowing between the accumulator and the heat pump of 0.084 kg/s. During the tests, no significant problems with the operation of the prototype cold accumulator were found.


Author(s):  
CP Jawahar

This paper presents the energy analysis of a triple effect absorption compression (hybrid) cycle employing ammonia water as working fluid. The performance parameters such as cooling capacity and coefficient of performance of the hybrid cycle is analyzed by varying the temperature of evaporator from −10 °C to 10 °C, absorber and condenser temperatures in first stage from 25 °C to 45 °C, degassing width in both the stages from 0.02 to 0.12 and is compared with the conventional triple effect absorption cycle. The results of the analysis show that the maximum cooling capacity attained in the hybrid cycle is 472.3 kW, at 10 °C evaporator temperature and first stage degassing width of 0.12. The coefficient of performance of the hybrid cycle is about 30 to 65% more than the coefficient of performance of conventional triple effect cycle.


2020 ◽  
Vol 15 (3) ◽  
Author(s):  
Afshar Alihosseini

AbstractCurrently, air separation units (ASUs) have become very important in various industries, particularly oil and petrochemical industries which provide feed and utility services (oxygen, nitrogen, etc.). In this study, a new industrial ASU was evaluated by collecting operational and process information needed by the simulator by means of HYSYS software (ASPEN-ONE). The results obtained from this simulator were analyzed by ASU data and its error rate was calculated. In this research, the simulation of ASU performance was done in the presence of an expansion turbine in order to provide pressure inside the air distillation tower. Likewise, the cooling capacity of the cooling compartment and the data were analysed. The results indicated that expansion turbine is costly effective. Notably, it not only reduces the energy needed to compress air and supply power of the equipment, but also provides more cooling power and reduces air temperature. Moreover, turbines also increase the concentration of lighter gas products, namely nitrogen.


This paper discusses the two-dimensional scattering of sound waves by two semi-infinite rigid parallel plates. The plates are staggered, so that a line in the plane of the motion passing through both edges is not in general perpendicular to the plane of either plate. The problem is formulated as a matrix Wiener-Hopf functional equation, which exhibits the difficulty of a kernel containing exponentially growing elements. We show how this difficulty may be overcome by constructing an explicit product decomposition of the matrix kernel with both factors having algebraic behaviour at infinity. This factorization is written in terms of a single entire auxiliary function that has a simple infinite series representation. The Wiener-Hopf equation is solved for arbitrary incident wave fields and we derive an asymptotic expression for the field scattered to infinity; the latter includes the possibility of propagating modes in the region between the plates. In part II of this work we will evaluate our solution numerically and obtain some analytical estimates in a number of physically interesting limits.


2011 ◽  
Vol 32 (3) ◽  
pp. 57-70 ◽  
Author(s):  
Dariusz Mikielewicz ◽  
Jarosław Mikielewicz

Utilisation of bleed steam heat to increase the upper heat source temperature in low-temperature ORC In the paper presented is a novel concept to utilize the heat from the turbine bleed to improve the quality of working fluid vapour in the bottoming organic Rankine cycle (ORC). That is a completely novel solution in the literature, which contributes to the increase of ORC efficiency and the overall efficiency of the combined system of the power plant and ORC plant. Calculations have been accomplished for the case when available is a flow rate of low enthalpy hot water at a temperature of 90 °C, which is used for preliminary heating of the working fluid. That hot water is obtained as a result of conversion of exhaust gases in the power plant to the energy of hot water. Then the working fluid is further heated by the bleed steam to reach 120 °C. Such vapour is subsequently directed to the turbine. In the paper 5 possible working fluids were examined, namely R134a, MM, MDM, toluene and ethanol. Only under conditions of 120 °C/40 °C the silicone oil MM showed the best performance, in all other cases the ethanol proved to be best performing fluid of all. Results are compared with the "stand alone" ORC module showing its superiority.


Author(s):  
Halil Tetik ◽  
Dong Lin

Abstract 3D freeze printing is a hybrid manufacturing method composed of freeze casting and inkjet-based printing. It is a facile method to fabricate lightweight, porous, and functional structures. Freeze casting is a well-known method for fabricating porous bodies and is capable of manipulating the micro-structure of the resulting product. Freeze casting simply involves solidification of a liquid suspension using low temperature and sublimation of the solvent using low temperature and pressure. After the sublimation of the solvent crystals, we obtain a porous structure where the pores are a replica of solvent crystal. Making use of the temperature gradient, as seen in unidirectional and bidirectional freeze casting, during the solidification with low temperature values, the solvent crystals grow along the temperature gradient. Furthermore, by manipulating the freezing kinetics during solidification, we can have a control on the average pore size distribution. For instance, when lower freezing temperatures result in finer pores with higher amount, higher freezing temperatures result in coarser pores with less amount. Also, the use of some additives inside the suspension leads to changes in the morphology of the solvent crystals as well as the resulting pores. However, the macro-structure of the fabricated body is highly dependent on the mold used during the process. In order to eliminate the dependency on the mold during the freeze casting process, our group recently combined this technique with inkjet-based 3D printing. With inkjet-based 3D printing, we fabricated uniform lines from single droplets, and complex 3D shapes from the lines. This provided us the ability of tailoring the macro structure of the final product without any dependency on a mold as seen in freeze casting. As a result of the 3D freeze printing process, we achieved fabricating lightweight, porous, and functional bodies with engineered micro and macro-structures. However, achieving fine droplets, and uniform lines by merging the droplets requires a good combination of fabrication parameters such as pressure adjustment inside the print head, print head speed, jetting frequency. Also, fabricating complex shapes from uniform lines requires well-adjusted parameters such as line thickness and layer height. In this study, we briefly explained the mechanics of the 3D freeze printing process. Following that we presented the development process of an open-source inkjet-based 3D printer. Finally, we explained the determination of inkjet dispensing and 3D printing parameters required for a high-quality 3D printing. During our experiments for the determination of fabrication parameters, we used a nanocellulose crystals-based ink due to its low cost and ease of preparation.


Sign in / Sign up

Export Citation Format

Share Document