SCRC Technology for Naval Propulsion

Author(s):  
Hans E. Wettstein

Supercharged Diesel engines are nowadays dominating naval propulsion. They have a thermal efficiency up to 50% and can swallow almost any liquid fuel. But there are two main drawbacks: Nitrogen oxides emissions of Diesel engines are sometimes higher than desired. Low speed vibrations can often be felt everywhere on the vessel. Some cruising ships therefore use gas turbines in spite of the lower thermal efficiency. But instead of supercharging Diesel engines also gas turbines can be supercharged. In combination with recuperation they could achieve even a higher thermal efficiency than Diesel engines. Such a concept with the name “Semi-Closed Recuperated Cycle” (SCRC) has been proposed in [1] for replacing gas turbine combined cycles. This paper shows new results of thermodynamic calculations of the SCRC with adiabatic or intercooled compressors. These calculations are optimized for naval applications with liquid fuels. The state of the SCRC technology is described with its expected operation, control concepts and limitations. Based on this investigation there is good evidence that supercharged Diesel technology for naval application could be seriously competed by the SCRC technology with respect to thermal efficiency, vibration (engine smoothness), emissions and specific mass (per kW power). It is the declared intention of the author to find companies who are interested in developing this technology.

Author(s):  
Bernhard Ćosić ◽  
Frank Reiss ◽  
Marc Blümer ◽  
Christian Frekers ◽  
Franklin Genin ◽  
...  

Abstract Industrial gas turbines like the MGT6000 are often operated as power supply or as mechanical drives. In these applications, liquid fuels like 'Diesel Fuel No.2' can be used either as main fuel or as backup fuel if natural gas is not reliably available. The MAN Gas Turbines (MGT) operate with the Advanced Can Combustion (ACC) system, which is capable of ultra-low NOx emissions for gaseous fuels. This system has been further developed to provide dry dual fuel capability. In the present paper, we describe the design and detailed experimental validation process of the liquid fuel injection, and its integration into the gas turbine package. A central lance with an integrated two-stage nozzle is employed as a liquid pilot stage, enabling ignition and start-up of the engine on liquid fuel only. The pilot stage is continuously operated, whereas the bulk of the liquid fuel is injected through the premixed combustor stage. The premixed stage comprises a set of four decentralized nozzles based on fluidic oscillator atomizers, wherein atomization of the liquid fuel is achieved through self-induced oscillations. We present results illustrating the spray, hydrodynamic, and emission performance of the injectors. Extensive testing of the burner at atmospheric and full load high-pressure conditions has been performed, before verification within full engine tests. We show the design of the fuel supply and distribution system. Finally, we discuss the integration of the dual fuel system into the standard gas turbine package of the MGT6000.


2021 ◽  
Author(s):  
M. A. Ancona ◽  
M. Bianchi ◽  
L. Branchini ◽  
A. De Pascale ◽  
F. Melino ◽  
...  

Abstract Gas turbines are often employed in the industrial field, especially for remote generation, typically required by oil and gas production and transport facilities. The huge amount of discharged heat could be profitably recovered in bottoming cycles, producing electric power to help satisfying the onerous on-site energy demand. The present work aims at systematically evaluating thermodynamic performance of ORC and supercritical CO2 energy systems as bottomer cycles of different small/medium size industrial gas turbine models, with different power rating. The Thermoflex software, providing the GT PRO gas turbine library, has been used to model the machines performance. ORC and CO2 systems specifics have been chosen in line with industrial products, experience and technological limits. In the case of pure electric production, the results highlight that the ORC configuration shows the highest plant net electric efficiency. The average increment in the overall net electric efficiency is promising for both the configurations (7 and 11 percentage points, respectively if considering supercritical CO2 or ORC as bottoming solution). Concerning the cogenerative performance, the CO2 system exhibits at the same time higher electric efficiency and thermal efficiency, if compared to ORC system, being equal the installed topper gas turbine model. The ORC scarce performance is due to the high condensing pressure, imposed by the temperature required by the thermal user. CO2 configuration presents instead very good cogenerative performance with thermal efficiency comprehended between 35 % and 46 % and the PES value range between 10 % and 22 %. Finally, analyzing the relationship between capital cost and components size, it is estimated that the ORC configuration could introduce an economical saving with respect to the CO2 configuration.


Author(s):  
Andreas Carl Pfahnl ◽  
David Gordon Wilson

A novel regenerator sealing concept is reported that can potentially reduce net compressed-air regenerator-seal leakage in gas turbines to unprecedented levels — near 1% of the net flow, greatly increasing the cycle thermal efficiency. The concept involves primarily discontinuously rotating a disk-type regenerator and implementing clamping seals. This work explains the principle of operation with discussions on preliminary-design calculations based on its use in a conceptual automotive gas turbine (Pfahnl and Wilson, 1995). Detailed regenerator-leakage calculations illustrate the drastically improved leakage rates.


Author(s):  
George M. Koutsothanasis ◽  
Anestis I. Kalfas ◽  
Georgios Doulgeris

This paper presents the benefits of the more electric vessels powered by hybrid engines and investigates the suitability of a particular prime-mover for a specific ship type using a simulation environment which can approach the actual operating conditions. The performance of a mega yacht (70m), powered by two 4.5MW recuperated gas turbines is examined in different voyage scenarios. The analysis is accomplished for a variety of weather and hull fouling conditions using a marine gas turbine performance software which is constituted by six modules based on analytical methods. In the present study, the marine simulation model is used to predict the fuel consumption and emission levels for various conditions of sea state, ambient and sea temperatures and hull fouling profiles. In addition, using the aforementioned parameters, the variation of engine and propeller efficiency can be estimated. Finally, the software is coupled to a creep life prediction tool, able to calculate the consumption of creep life of the high pressure turbine blading for the predefined missions. The results of the performance analysis show that a mega yacht powered by gas turbines can have comparable fuel consumption with the same vessel powered by high speed Diesel engines in the range of 10MW. In such Integrated Full Electric Propulsion (IFEP) environment the gas turbine provides a comprehensive candidate as a prime mover, mainly due to its compactness being highly valued in such application and its eco-friendly operation. The simulation of different voyage cases shows that cleaning the hull of the vessel, the fuel consumption reduces up to 16%. The benefit of the clean hull becomes even greater when adverse weather condition is considered. Additionally, the specific mega yacht when powered by two 4.2MW Diesel engines has a cruising speed of 15 knots with an average fuel consumption of 10.5 [tonne/day]. The same ship powered by two 4.5MW gas turbines has a cruising speed of 22 knots which means that a journey can be completed 31.8% faster, which reduces impressively the total steaming time. However the gas turbine powered yacht consumes 9 [tonne/day] more fuel. Considering the above, Gas Turbine looks to be the only solution which fulfills the next generation sophisticated high powered ship engine requirements.


Author(s):  
Nicolai Neumann ◽  
Dieter Peitsch ◽  
Arne Berthold ◽  
Frank Haucke ◽  
Panagiotis Stathopoulos

Abstract Performance improvements of conventional gas turbines are becoming increasingly difficult and costly to achieve. Pressure Gain Combustion (PGC) has emerged as a promising technology in this respect, due to the higher thermal efficiency of the respective ideal gas turbine cycle. Previous cycle analyses considering turbine cooling methods have shown that the application of pressure gain combustion may require more turbine cooling air. This has a direct impact on the cycle efficiency and reduces the possible efficiency gain that can potentially be harvested from the new combustion technology. Novel cooling techniques could unlock an existing potential for a further increase in efficiency. Such a novel turbine cooling approach is the application of pulsed impingement jets inside the turbine blades. In the first part of this paper, results of pulsed impingement cooling experiments on a curved plate are presented. The potential of this novel cooling approach to increase the convective heat transfer in the inner side of turbine blades is quantified. The second part of this paper presents a gas turbine cycle analysis where the improved cooling approach is incorporated in the cooling air calculation. The effect of pulsed impingement cooling on the overall cycle efficiency is shown for both Joule and PGC cycles. In contrast to the authors’ anticipation, the results suggest that for relevant thermodynamic cycles pulsed impingement cooling increases the thermal efficiency of Joule cycles more significantly than it does in the case of PGC cycles. Thermal efficiency improvements of 1.0 p.p. for pure convective cooling and 0.5 p.p. for combined convective and film with TBC are observed for Joule cycles. But just up to 0.5 p.p. for pure convective cooling and 0.3 p.p. for combined convective and film cooling with TBC are recorded for PGC cycles.


1980 ◽  
Author(s):  
A. W. McCoy

Analysis of gas turbine-powered naval ships of 500- to 4000-ton size has been performed for ocean escort and patrol missions with performance levels appropriate to gas turbines of both current and advanced technology. The use of gas turbine systems allows the realization of high mission effectiveness with relatively small ships. For advanced marine gas turbines, the most significant ship benefit would result from increased thermal efficiency of cruise engines by means of regenerative cycles. A secondary improvement, particularly for high dash speeds, would be the reduction of specific weight for dash engines. With such advanced gas turbines, ship sizes may be further reduced for given mission capabilities.


Author(s):  
Tadashi Tsuji

Air cooling blades are usually applied to gas turbines as a basic specification. This blade cooling air is almost 20% of compressor suction air and it means that a great deal of compression load is not converted effectively to turbine power generation. This paper proposes the CCM (Cascade Cooling Module) system of turbine blade air line and the consequent improvement of power generation, which is achieved by the reduction of cooling air consumption with effective use of recovered heat. With this technology, current gas turbines (TIT: turbine inlet temperature: 1350°C) can be up-rated to have a relative high efficiency increase. The increase ratio has a potential to be equivalent to that of 1500°C Class GT/CC against 1350°C Class. The CCM system is designed to enable the reduction of blade cooling air consumption by the low air temperature of 15°C instead of the usual 200–400°C. It causes the turbine operating air to increase at the constant suction air condition, which results in the enhancement of power and thermal efficiency. The CCM is installed in the cooling air line and is composed of three stage coolers: steam generator/fuel preheater stage, heat exchanger stage for hot water supplying and cooler stage with chilled water. The coolant (chilled water) for downstream cooler is produced by an absorption refrigerator operated by the hot water of the upstream heat exchanger. The proposed CCM system requires the modification of cooling air flow network in the gas turbine but produces the direct effect on performance enhancement. When the CCM system is applied to a 700MW Class CC (Combined Cycle) plant (GT TIT: 135°C Class), it is expected that there will be a 40–80MW increase in power and +2–5% relative increase in thermal efficiency.


Author(s):  
Maher A. Elmasri

A fast, interactive, flexible computer program has been developed to facilitate system selection and design for gas turbine based power and cogeneration plants. A data base containing ISO performance information on forty-two gas turbines is coupled to an off-design model to predict engine characteristics for different site and installation parameters. A heat recovery steam generator (HRSG) model allows boiler size and cost to be estimated as a function of the system’s technical parameters. The model can handle HRSG’s with up to two live steam pressures plus a third feedheating/deaerating drum. Five basic types of combined cycle are covered with up to four different process steam streams for cogeneration or gas turbine injection. Two additional feedheating steam bleeds are supported for condensing combined cycles. The program is intelligent with some internal decision making capabilities regarding process steam sourcing and flow directions and will automatically select the appropriate heat and mass balance procedures to cover a wide variety of process flow schematics. The program provides plotter outputs to show the cycle process flow schematic, T-s and h-s diagrams, and HRSG temperature profiles. An application of GTPRO in analyzing some technical and economic performance trade-offs for two-pressure combined cycles is presented.


Author(s):  
J. H. Horlock ◽  
W. A. Woods

Earlier analytical and graphical treatments of gas turbine performance, assuming the working fluid to be a perfect gas, are developed to allow for ‘non-perfect’ gas effects and pressure losses. The pressure ratios for maximum power and maximum thermal efficiency are determined analytically; the graphical presentations of performance based on the earlier approach are also modified. It is shown that the optimum conditions previously determined from the ‘air standard’ analyses may be changed quite substantially by the inclusion of the ‘real’ effects.


Sign in / Sign up

Export Citation Format

Share Document