A Novel Approach Towards Waste Treatment in FBC

Author(s):  
Fadi Eldabbagh ◽  
Karl K. Rink ◽  
Janusz A. Kozinski

Waste combustion has the potential to play an important role in the energy production despite its contribution to heavy metals emissions. A new multi-zone temperature combustion technique, known as a Low-High-Low (LHL) temperature method, was developed to reduce pollutant emissions, particularly heavy metals, from FBCs. This paper focuses on the environmental impacts of biowaste combustion at different FBC conditions with emphasis on gas and solid emissions. The biowaste (de-inking sludge) studied contained 15% moisture, 27% carbon, 18% oxygen, and 35% ash. Ash elemental analysis shows a dominance of SiO2, Al2O3 and CaO (38%, 28% and 19%, respectively) with selected alkalis Na2O and K2O (0.3% and 0.2%, respectively). The used biowaste material had a heating value of 10,000 kJ/kg, which indicates that its combustion may be used to treat a portion of the total solid waste produced, while generating energy. The paper reports the following results of LHL vs. Classical FBC: (1) average axial profiles of gas concentrations (NO, NOx, and CO2) as well as their final averages at the exhaust, (2) final heavy metals leachability from generated fly ash. During the multi-temperature combustion experiments (LHL), the final average gas measurements for NO, NOx, and CO2 were 91 ppm, 175 ppm, and 6.1%, respectively. As for the classical FBC experiments, the final average gas measurements were similar (94 ppm, 141 ppm and 5.9% for NO, NOx and CO2, respectively). The final fly ash sample had leachability rates of 0.14 ppm and 0.061 ppm for Cd and Cr, respectively. Such low leachability rates are due to the LHL’s ability to form dense and compact final fly ash structures. On the contrary, 30.7 ppm and 14.3 ppm of Cd and Cr leached out of the porous no-LHL final fly ash structures, respectively. These results confirm that the LHL combustion could be considered as an effective waste-to-energy approach.

1997 ◽  
Vol 35 (8) ◽  
pp. 231-238 ◽  
Author(s):  
Tay Joo Hwa ◽  
S. Jeyaseelan

Conditioning of sludges improves dewatering characteristics and reduces the quantity of sludge to be handled. Anaerobic digested sludge collected from a sewage treatment plant contained 1.8% to 8% oil. The increase of specific resistance and capillary suction time (CST) with increasing oil content observed in these samples indicates the interference of oil in dewatering. It has been found that addition of municipal solid wastes incinerator fly ash decreases the specific resistances and capillary suction times of oily sludges rapidly up to 3% dosage. Beyond 3% fly ash, the decrease is less significant and the solids content in the sludge cake increases. This optimum dosage remains the same for sludges with varying oil contents from 1.8% to 12%. The total suspended solids of filtrate decreases with fly ash dosage but the toxic concentrations of heavy metals increases considerably. However at the optimum dosage of 3%, concentrations of heavy metals are within the limits for discharging into the sewers. The correlations of CST with the dewatering characteristics such as specific resistance, filter yield and corrected filter yield are established. These correlations can be used to obtain a quick prediction on dewaterability.


2021 ◽  
pp. 1-11
Author(s):  
Aysu Melis Buyuk ◽  
Gul T. Temur

In line with the increase in consciousness on sustainability in today’s global world, great emphasis has been attached to food waste management. Food waste is a complex issue to manage due to uncertainties on quality, quantity, location, and time of wastes, and it involves different decisions at many stages from seed to post-consumption. These ambiguities re-quire that some decisions should be handled in a linguistic and ambiguous environment. That forces researchers to benefit from fuzzy sets mostly utilized to deal with subjectivity that causes uncertainty. In this study, as a novel approach, the spherical fuzzy analytic hierarchy process (SFAHP) was used to select the best food treatment option. In the model, four main criteria (infrastructural, governmental, economic, and environmental) and their thirteen sub-criteria are considered. A real case is conducted to show how the proposed model can be used to assess four food waste treatment options (composting, anaerobic digestion, landfilling, and incineration). Also, a sensitivity analysis is generated to check whether the evaluations on the main criteria can change the results or not. The proposed model aims to create a subsidiary tool for decision makers in relevant companies and institutions.


2021 ◽  
Vol 13 (2) ◽  
pp. 535
Author(s):  
Jing Gao ◽  
Tao Wang ◽  
Jie Zhao ◽  
Xiaoying Hu ◽  
Changqing Dong

Melting solidification experiments of municipal solid waste incineration (MSWI) fly ash were carried out in a high-temperature tube furnace device. An ash fusion temperature (AFT) test, atomic absorption spectroscopy (AAS), scanning electron microscope (SEM), and X-ray diffraction (XRD) were applied in order to gain insight into the ash fusibility, the transformation during the melting process, and the leaching behavior of heavy metals in slag. The results showed that oxide minerals transformed into gehlenite as temperature increased. When the temperature increased to 1300 °C, 89 °C higher than the flow temperature (FT), all of the crystals transformed into molten slag. When the heating temperatures were higher than the FT, the volatilization of the Pb, Cd, Zn, and Cu decreased, which may have been influenced by the formation of liquid slag. In addition, the formation of liquid slag at a high temperature also improved the stability of heavy metals in heated slag.


2014 ◽  
Vol 22 (4) ◽  
pp. 2505-2514 ◽  
Author(s):  
Abid Ullah ◽  
Hafsa Mushtaq ◽  
Hazrat Ali ◽  
Muhammad Farooq Hussain Munis ◽  
Muhammad Tariq Javed ◽  
...  

2021 ◽  
Vol 297 ◽  
pp. 113298
Author(s):  
Andreas Aditya Hermawan ◽  
Kok Leong Teh ◽  
Amin Talei ◽  
Lloyd H.C. Chua
Keyword(s):  

2011 ◽  
Vol 194-196 ◽  
pp. 2365-2375
Author(s):  
Jai Houng Leu ◽  
Li Fong Wu ◽  
Ay Su

This research investigated and explored the overall technical and legal suggestions on mixed ash (bottom ash + fly ash) from the first BOT(built-operation then transfer) incineration plant in south Taoyuan of Taiwan, with the hope of serving as the reference for treating ash from urban refuse incinerator and making sustainable operation management policies in Taiwan. Both bottom ash and fly ash contain high-content harmful metals like lead, chrome, and cadmium, with the lead content exceeding standard value. Plasma fusing technology may effectively settle toxic heavy metals and reduce their dissolution rate. The results show that the increase in percentage of bottom ash could maintain post-fusing strength and produce solidification effect, but this reduced the stability of toxic heavy metals and raised their dissolution rate. Suitable mixture ratio of bottom ash and fly ash was 2:1, volume reduction ratio 0.349, and weight reduction ratio 0.4936. The mixture was fulvous and dense with gloss and adequate strength. The dissolution test of lava products complied with national standards, and they might be used for recycling aggregates and solidifying cement.


2013 ◽  
Vol 31 (10_suppl) ◽  
pp. 67-74 ◽  
Author(s):  
Alberto Bezama ◽  
Carla Douglas ◽  
Jacqueline Méndez ◽  
Nóra Szarka ◽  
Edmundo Muñoz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document