Non-Stationary Signal Analysis of the von Ka´rma´n Vortex Shedding in the Wake of a Fluttering Airfoil

Author(s):  
Amin Fereidooni ◽  
Abhijit Sarkar ◽  
Dominique Poirel ◽  
Aze´mi Benaissa ◽  
Vincent Me´tivier ◽  
...  

Stationary data lend themselves well to the Fourier decomposition into harmonic components. Conversely, spectral characteristics of non-stationary data vary with time, and hence do not generally admit the application of Fourier transform. In order to investigate the localized time-frequency characteristics of non-stationary data, the notions of instantaneous frequency and amplitude are invoked. These concepts are applied to the von Ka´rma´n vortex shedding observed in the wake of a self-sustained pitching airfoil. For this range of Reynolds numbers (104 – 105), it has been reported that at any given airspeed the shedding frequency of the vortex street varies with angle of attack (AOA), ranging from the Strouhal number St ≈ 0.6 at zero AOA and tending to St ≈ 0.1 for high AOA. For the pitching motion, which originates from a positive energy transfer from the flow to the airfoil due to negative aerodynamic damping, the von Ka´rma´n vortex shedding frequency varies with pitch angle hence with time. Hilbert transform provides a robust estimate of instantaneous frequency through the definition of analytic signals. However, Hilbert transform provides meaningful instantaneous frequency for only monocomponent signals. To overcome this difficulty, the Hilbert-Huang transform is commonly exploited. In this paper, both the Hilbert and Hilbert-Huang transforms are applied in order to capture the instantaneous vortex shedding frequency. For multicomponent signals Empirical Mode Decomposition (EMD) splits the signal to monocomponent signals, namely Intrinsic Mode Functions, through a so-called sifting process. Application of Hilbert transform to these functions produces instantaneous frequencies and amplitudes. Therefore the time-frequency-amplitude representation of the signal appears to be a promising tool for obtaining more physical insight into the time-varying vortex shedding frequency in the wake of a pitching airfoil.

1984 ◽  
Vol 106 (1) ◽  
pp. 70-78 ◽  
Author(s):  
A. J. Grass ◽  
P. W. J. Raven ◽  
R. J. Stuart ◽  
J. A. Bray

The paper summarizes the results of a laboratory study of the separate and combined effects of bed proximity and large velocity gradients on the frequency of vortex shedding from pipeline spans immersed in the thick boundary layers of tidal currents. This investigation forms part of a wider project concerned with the assessment of span stability. The measurements show that in the case of both sheared and uniform approach flows, with and without velocity gradients, respectively, the Strouhal number defining the vortex shedding frequency progressively increases as the gap between the pipe base and the bed is reduced below two pipe diameters. The maximum increase in vortex shedding Strouhal number, recorded close to the bed in an approach flow with large velocity gradients, was of the order of 25 percent.


2014 ◽  
Vol 493 ◽  
pp. 68-73 ◽  
Author(s):  
Willy Stevanus ◽  
Yi Jiun Peter Lin

The research studies the characteristics of the vertical flow past a finite-length horizontal cylinder at low Reynolds numbers (ReD) from 250 to 1080. The experiments were performed in a vertical closed-loop water tunnel. Flow fields were observed by the particle tracer approach for flow visualization and measured by the Particle Image Velocimetry (P.I.V.) approach for velocity fields. The characteristics of vortex formation in the wake of the finite-length cylinder change at different regions from the tip to the base of it. Near the tip, a pair of vortices in the wake was observed and the size of the vortex increased as the observed section was away from the tip. Around a distance of 3 diameters of the cylinder from its tip, the vortex street in the wake was observed. The characteristics of vortex formation also change with increasing Reynolds numbers. At X/D = -3, a pair of vortices was observed in the wake for ReD = 250, but as the ReD increases the vortex street was observed at the same section. The vortex shedding frequency is analyzed by Fast Fourier Transform (FFT). Experimental results show that the downwash flow affects the vortex shedding frequency even to 5 diameters of the cylinder from its tip. The interaction between the downwash flow and the Von Kármán vortex street in the wake of the cylinder is presented in this paper.


Author(s):  
S Olhede ◽  
A.T Walden

In this paper, we introduce a flexible approach for the time-frequency analysis of multicomponent signals involving the use of analytic vectors and demodulation. The demodulated analytic signal is projected onto the time-frequency plane so that, as closely as possible, each component contributes exclusively to a different ‘tile’ in a wavelet packet tiling of the time-frequency plane, and at each time instant, the contribution to each tile definitely comes from no more than one component. A single reverse demodulation is then applied to all projected components. The resulting instantaneous frequency of each component in each tile is not constrained to a set polynomial form in time, and is readily calculated, as is the corresponding Hilbert energy spectrum. Two examples illustrate the method. In order better to understand the effect of additive noise, the approximate variance of the estimated instantaneous frequency in any tile has been formulated by starting with pure noise and studying its evolving covariance structure through each step of the algorithm. The validity and practical utility of the resulting expression for the variance of the estimated instantaneous frequency is demonstrated via a simulation experiment.


Author(s):  
Junxiang Shi ◽  
Steven R. Schafer ◽  
Chung-Lung (C. L. ) Chen

A passive, self-agitating method which takes advantage of vortex-induced vibration (VIV) is presented to disrupt the thermal boundary layer and thereby enhance the convective heat transfer performance of a channel. A flexible cylinder is placed at centerline of a channel. The vortex shedding due to the presence of the cylinder generates a periodic lift force and the consequent vibration of the cylinder. The fluid-structure-interaction (FSI) due to the vibration strengthens the disruption of the thermal boundary layer by reinforcing vortex interaction with the walls, and improves the mixing process. This novel concept is demonstrated by a three-dimensional modeling study in different channels. The fluid dynamics and thermal performance are discussed in terms of the vortex dynamics, disruption of the thermal boundary layer, local and average Nusselt numbers (Nu), and pressure loss. At different conditions (Reynolds numbers, channel geometries, material properties), the channel with the VIV is seen to significantly increase the convective heat transfer coefficient. When the Reynolds number is 168, the channel with the VIV improves the average Nu by 234.8% and 51.4% in comparison with a clean channel and a channel with a stationary cylinder, respectively. The cylinder with the natural frequency close to the vortex shedding frequency is proved to have the maximum heat transfer enhancement. When the natural frequency is different from the vortex shedding frequency, the lower natural frequency shows a higher heat transfer rate and lower pressure loss than the larger one.


Author(s):  
Mohammed Alziadeh ◽  
Atef Mohany

Abstract This article explores the applicability of utilizing different equivalent diameter (Deq) equations to estimate the vortex shedding frequency and onset of self-excited acoustic resonance for various types of finned cylinders. The focus is on three finned cylinder types that are commonly used in industrial heat exchangers: straight, twist-serrated, and crimped spirally finned cylinders. Within each type of fins, at least three different finned cylinders are investigated. The results indicate that at off-resonance conditions, utilizing the appropriate equivalent diameter collapses the Strouhal number data within the typical Strouhal number variations of an equivalent diameter circular, bare cylinder. However, when acoustic resonance is initiated, the onset and the peak of resonance excitation in all of the finned cylinder cases generally occurred at a reduced flow velocity earlier than that observed from their equivalent diameter bare cylinders. This suggests that although utilizing the appropriate equivalent diameter can reasonably estimate the vortex shedding frequency away from acoustic resonance excitation, it cannot be used to predict the onset of acoustic resonance in finned tubes. The findings of this study indicate that the effective diameter approach is not sufficient to capture the intrinsic changes in the flow-sound interaction mechanism as a result of adding fins to a bare cylinder. Thus, a revision of the acoustic Strouhal number charts is required for finned tubes of different types and arrangements.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2170
Author(s):  
Vittoria Bruni ◽  
Michela Tartaglione ◽  
Domenico Vitulano

Frequency modulated signals appear in many applied disciplines, including geology, communication, biology and acoustics. They are naturally multicomponent, i.e., they consist of multiple waveforms, with specific time-dependent frequency (instantaneous frequency). In most practical applications, the number of modes—which is unknown—is needed for correctly analyzing a signal; for instance for separating each individual component and for estimating its instantaneous frequency. Detecting the number of components is a challenging problem, especially in the case of interfering modes. The Rényi Entropy-based approach has proven to be suitable for signal modes counting, but it is limited to well separated components. This paper addresses this issue by introducing a new notion of signal complexity. Specifically, the spectrogram of a multicomponent signal is seen as a non-stationary process where interference alternates with non-interference. Complexity concerning the transition between consecutive spectrogram sections is evaluated by means of a modified Run Length Encoding. Based on a spectrogram time-frequency evolution law, complexity variations are studied for accurately estimating the number of components. The presented method is suitable for multicomponent signals with non-separable modes, as well as time-varying amplitudes, showing robustness to noise.


2020 ◽  
Vol 12 (17) ◽  
pp. 2766
Author(s):  
Ke Ren ◽  
Lan Du ◽  
Xiaofei Lu ◽  
Zhenyu Zhuo ◽  
Lu Li

The instantaneous frequency (IF) is a vital parameter for the analysis of non-stationary multicomponent signals, and plays an important role in space cone-shaped target recognition. For a cone-shaped target, IF estimation is not a trivial issue due to the proximity of the energy of the IF components, the intersections among different IF components, and the existence of noise. Compared with the general parameterized time-frequency (GPTF), the traditional Kalman filter can perform better when the energy of different signal components is close. Nevertheless, the traditional Kalman filter usually makes association mistakes at the intersections of IF components and is sensitive to the noise. In this paper, a novel IF estimation method based on modified Kalman filter (MKF) is proposed, in which the MKF is used to associate the intersecting IF trajectories obtained by the synchroextracting transform (SET). The core of MKF is the introduction of trajectory correction strategy in which a trajectory survival rate is defined to judge the occurrence of association mistakes. When the trajectory survival rate is below the predetermined threshold, it means that an association mistakes occurs, and then the new trajectories generated by the random sample consensus algorithm are used to correct the wrong associations timely. The trajectory correction strategy can effectively obviate the association mistakes caused by the intersections of IF components and the noise. The windowing technique is also used in the trajectory correction strategy to improve computational speed. The experimental results based on the electromagnetic computation data show that the proposed method is more robust and precise than the traditional Kalman filter. Moreover, the proposed method has great performance advantages compared with other methods (i.e., the multiridge detection, the ant colony optimization, and the GPTF methods) especially in the case of low signal noise ratio (SNR).


2013 ◽  
Vol 735 ◽  
pp. 307-346 ◽  
Author(s):  
S. Kumar ◽  
C. Lopez ◽  
O. Probst ◽  
G. Francisco ◽  
D. Askari ◽  
...  

AbstractFlow past a circular cylinder executing sinusoidal rotary oscillations about its own axis is studied experimentally. The experiments are carried out at a Reynolds number of 185, oscillation amplitudes varying from $\mathrm{\pi} / 8$ to $\mathrm{\pi} $, and at non-dimensional forcing frequencies (ratio of the cylinder oscillation frequency to the vortex-shedding frequency from a stationary cylinder) varying from 0 to 5. The diagnostic is performed by extensive flow visualization using the hydrogen bubble technique, hot-wire anemometry and particle-image velocimetry. The wake structures are related to the velocity spectra at various forcing parameters and downstream distances. It is found that the phenomenon of lock-on occurs in a forcing frequency range which depends not only on the amplitude of oscillation but also the downstream location from the cylinder. The experimentally measured lock-on diagram in the forcing amplitude and frequency plane at various downstream locations ranging from 2 to 23 diameters is presented. The far-field wake decouples, after the lock-on at higher forcing frequencies and behaves more like a regular Bénard–von Kármán vortex street from a stationary cylinder with vortex-shedding frequency mostly lower than that from a stationary cylinder. The dependence of circulation values of the shed vortices on the forcing frequency reveals a decay character independent of forcing amplitude beyond forcing frequency of ${\sim }1. 0$ and a scaling behaviour with forcing amplitude at forcing frequencies ${\leq }1. 0$. The flow visualizations reveal that the far-field wake becomes two-dimensional (planar) near the forcing frequencies where the circulation of the shed vortices becomes maximum and strong three-dimensional flow is generated as mode shape changes in certain forcing parameter conditions. It is also found from flow visualizations that even at higher Reynolds number of 400, forcing the cylinder at forcing amplitudes of $\mathrm{\pi} / 4$ and $\mathrm{\pi} / 2$ can make the flow field two-dimensional at forcing frequencies greater than ${\sim }2. 5$.


1984 ◽  
Vol 106 (2) ◽  
pp. 214-221 ◽  
Author(s):  
F. Rajabi ◽  
M. F. Zedan ◽  
A. Mangiavacchi

An analytical model to predict the dynamic response of a riser in regular waves or in current to vortex shedding-induced lift forces is described. The riser is treated as a continuous beam under tension. A modal superposition scheme is used to solve the linearized equation of motion in the frequency domain. The excitation lift force is represented by a harmonic function with a frequency equal to the dominant vortex shedding frequency. Empirical correlations are used to determine the lift coefficients and shedding frequencies along the riser. Lift amplification is considered at or near the “lock-in” conditions. The fluid resistance to riser oscillations is represented by a Morison’s equation-type expression.


Sign in / Sign up

Export Citation Format

Share Document