Droplet Formation by Dripping at Micro T-Junction in Liquid-Liquid Mixing

Author(s):  
Sujin Yeom ◽  
Sang Yong Lee

In the present work, the phenomenon of droplet formation by dripping at a micro T-junction in liquid-liquid mixing was studied experimentally. The drop formation process consisted of three stages: the X-Y growth, X growth, and the detachment stages. In the X-Y growth stage, the bulged part of the disperse phase grows both in X (parallel to the main channel) and Y (lateral to the main channel) directions. The X-Y growth stage is followed by the X growth stage where the bulged part grows only in the main channel direction. Subsequently, in the detachment stage, the drag force exerted by the continuous phase becomes larger than the surface tension force between the two phases and the bulged part is finally separated into a droplet with regular intervals through a rapid necking process. Droplet sizes were estimated from the drop generation frequency and the flow rate of the disperse phase, and were also confirmed by direct measurements through photography. The sizes of the micro droplets generally decrease with the larger flow rate of the continuous phase or with a smaller flow rate of the disperse phase. This is due to the increase of the interfacial shear force between the two phases through the increase in the relative velocity. The droplet size also decreases with increase of the viscosity of the either phase. This again is due to the increase of the interfacial shear force (and hence the drag force) between the phases when the viscosity of either phase becomes large. The measured drop sizes will serve as a set of the benchmarking data for the development of a droplet detachment model in the dripping mode at micro T-junctions.

Author(s):  
Katerina Loizou ◽  
Wim Thielemans ◽  
Buddhika N. Hewakandamby

The main aim of this study is to examine how the droplet formation in microfluidic T-junctions is influenced by the cross-section and aspect ratio of the microchannels. Several studies focusing on droplet formation in microfluidic devices have investigated the effect of geometry on droplet generation in terms of the ratio between the width of the main channel and the width of the side arm of the T-junction. However, the contribution of the aspect ratio and thus that of the cross-section on the mechanism of break up has not been examined thoroughly with most of the existing work performed in the squeezing regime. Two different microchannel geometries of varying aspect ratios are employed in an attempt to quantify the effect of the ratio between the width of the main channel and the height of the channel on droplet formation. As both height and width of microchannels affect the area on which shear stress acts deforming the dispersed phase fluid thread up to the limit of detaching a droplet, it is postulated that geometry and specifically cross-section of the main channel contribute on the droplet break-up mechanisms and should not be neglected. The above hypothesis is examined in detail, comparing the volume of generated microdroplets at constant flowrate ratios and superficial velocities of continuous phase in two microchannel systems of two different aspect ratios operating at dripping regime. High-speed imaging has been utilised to visualise and measure droplets formed at different flowrates corresponding to constant superficial velocities. Comparing volumes of generated droplets in the two geometries of area ratio near 1.5, a significant increase in volume is reported for the larger aspect ratio utilised, at all superficial velocities tested. As both superficial velocity of continuous phase and flowrate ratio are fixed, superficial velocity of dispersed phase varies. However this variation is not considered to be large enough to justify the significant increase in the droplet volume. Therefore it can be concluded that droplet generation is influenced by the aspect ratio and thus the cross-section of the main channel and its effect should not be depreciated. The paper will present supporting evidence in detail and a comparison of the findings with the existing theories which are mainly focused on the squeezing regime.


Author(s):  
A. Javadi ◽  
M. Taeibi-Rahni ◽  
D. Bastani ◽  
K. Javadi

For the reason that flow expansion model (developed in our previous work) for evaluating mass transfer during droplet formation involves with manifest hydrodynamic aspects, in this research computational simulation of this phenomenon was done for characterization of hydrodynamics effects on the mass transfer during droplet formation. For this purpose, an Eulerian volume tracking computational code based on volume of fluid (VOF) method was developed to solve the transient Navier-Stokes equations for the axisymmetric free-boundary problem of a Newtonian liquid that is dripping vertically and breaking as drops into another immiscible Newtonian fluid. The effects of hydrodynamics effects on the mass transfer during droplet formation have been discussed in the three features, including: 1- The intensity of the interaction between two phases 2-The strength and positions of the main vorticities on the nozzle tip 3-The effects of local interfacial vorticities (LIV). These features are considered to explain the complexities of drop formation mass transfer between Ethyl Acetoacetate (presaturated with water) as an organic dispersed phase and water as continuous phase for two big and small nozzle sizes (0.023 and 0.047 cm, ID) which have different level of mass transfer rate particularly in first stages of formation time.


2020 ◽  
Vol 12 (07) ◽  
pp. 2050077
Author(s):  
Seyedeh Sarah Salehi ◽  
Amir Shamloo ◽  
Siamak Kazemzadeh Hannani

Droplet-based microfluidics technologies hold great attention in a wide range of applications, including chemical analysis, drug screening, and food industries. This work aimed to describe the effects of different physical properties of the two immiscible phases on droplet formation in a flow-focusing microfluidic device and determining proper flow rates to form a droplet within the desired size range. A numerical model was developed to solve the governing equations of two-phase flow and the results were validated with previous experimental results. The results demonstrate different types of droplet formation regimes from dripping to jetting and different production rates of droplets as a consequence of the impact of each property on fluid flow, including the viscosity ratio, density, interfacial tension, and the flow rate ratio. Based on the results, flow rate, viscosity, and interfacial tension strongly affect the droplet formation regime as well as its size and shape. Droplet diameter increases by increasing the dispersed to continuous phase flow rate as well as the interfacial tension while it decreases by increasing the viscosity ratio and the continuous phase density. Moreover, the formation of satellite droplets was modeled, and the effect of interfacial tension, the viscosity of the dispersed phase and the continuous phase density were found to be important on the conditions that the satellite droplets are suppressed. Since the formation of the satellite droplets induces polydispersity in droplet size, this phenomenon is avoided. Collectively, choosing appropriate aqueous and oil phases with proper physical properties is crucial in forming monodisperse droplets with defined size and shape.


Author(s):  
Shobeir Aliasghar Zadeh ◽  
Rolf Radespiel

The liquid-gas two-phase flow in a flow-focusing device are numerically investigated and the results are compared with experimental data. The geometries and the structured meshes were generated using the Gridgen software, while the computations were conducted with Fluent. N2 (disperse phase) and Water-Glycerol solution (continuous phase) at standard atmospheric conditions are considered as fluids. Based on dimensional analysis, the effects of various parameters such as the flow rates of both phases (effect of CQ = Qd/Qc), the viscosities of both phases (effect of the respective Reynolds number Re), the surface tension (effect of the capillary number) and the geometrical properties of the channel (channel width W and injection angle β) on the bubble formation and its length are compared to available experimental results. The break-up mechanism of the bubbles in various capillary regimes is explained. The computed length of the generated bubbles as a function of the capillary number (varying the flow rate of the continuous phase) are in good agreement with the experiments. Further studies indicate that at a constant flow rate of the continuous phase, the bubble length rises strongly as the flow rate of the disperse phase increases. In contrast, the relative effects of the viscosity and the surface tension on the length of the bubbles are moderate. The numerical results using various injection angles show that the bubble length increases, as the injection angle is raised from β = 45° to β = 90°.


2011 ◽  
Vol 9 (5) ◽  
pp. 1235-1256 ◽  
Author(s):  
Haihu Liu ◽  
Yonghao Zhang

AbstractUsing the lattice Boltzmann multiphase model, numerical simulations have been performed to understand the dynamics of droplet formation in a microfluidic cross-junction. The influence of capillary number, flow rate ratio, viscosity ratio, and viscosity of the continuous phase on droplet formation has been systematically studied over a wide range of capillary numbers. Two different regimes, namely the squeezinglike regime and the dripping regime, are clearly identified with the transition occurring at a critical capillary number Cacr. Generally, large flow rate ratio is expected to produce big droplets, while increasing capillary number will reduce droplet size. In the squeezing-like regime (Ca ≤ Cacr), droplet breakup process is dominated by the squeezing pressure and the viscous force; while in the dripping regime (Ca ≤ Cacr), the viscous force is dominant and the droplet size becomes independent of the flow rate ratio as the capillary number increases. In addition, the droplet size weakly depends on the viscosity ratio in both regimes and decreases when the viscosity of the continuous phase increases. Finally, a scaling law is established to predict the droplet size.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1341
Author(s):  
Li Lei ◽  
Yuting Zhao ◽  
Wukai Chen ◽  
Huiling Li ◽  
Xinyu Wang ◽  
...  

In this study, changes in the droplet formation mechanism and the law of droplet length in a two-phase liquid–liquid system in 400 × 400 μm standard T-junction microchannels were experimentally studied using a high-speed camera. The study investigated the effects of various dispersed phase viscosities, various continuous phase viscosities, and two-phase flow parameters on droplet length. Two basic flow patterns were observed: slug flow dominated by the squeezing mechanism, and droplet flow dominated by the shear mechanism. The dispersed phase viscosity had almost no effect on droplet length. However, the droplet length decreased with increasing continuous phase viscosity, increasing volume flow rate in the continuous phase, and the continuous-phase capillary number Cac. Droplet length also increased with increasing volume flow rate in the dispersed phase and with the volume flow rate ratio. Based on the droplet formation mechanism, a scaling law governing slug and droplet length was proposed and achieved a good fit with experimental data.


Author(s):  
Shobeir Aliasghar Zadeh ◽  
Rolf Radespiel

The liquid-liquid two-phase flow in a T-junction was numerically investigated applying the VOF method and is compared with experimental results. The geometry was generated and meshed using the software Gridgen, and the corresponding equations for the CFD analysis were solved by using the commercial software Fluent (Fluent 12). The generated mesh consists of block-structured grids with hexahedral elements. Water-Glycerol solution (to-be-dispersed phase) and silicone oil (continuous phase) at room conditions are considered as fluids for this work. The effect of various parameters such as flow rate of the phases, width of the channel, viscosity and surface tension on the droplet formation are investigated and compared with available experimental results [1]. The breakup mechanism of droplets in various capillary-number regimes are explained. The numerical results of the length of the generated droplets as a function of the capillary number (varying the flow rate of the continuous phase) are in good agreement with the experimental values, which were measured using the same geometrical and physical properties. Further studies indicate that at a constant flow rate of the continuous phase, the droplet length rises strongly if the flow rate of the disperse phase increases, whereas the relative effects of the viscosity of the continuous phase, and the surface tension between phases on the length of droplets are moderate.


2012 ◽  
Author(s):  
Zhipeng Gu ◽  
Jong-Leng Liow ◽  
Guofeng Zhu

Xanthan gum solutions with various concentrations were used as the dispersed phase to study the formation time for drop formation at a T-junction. Two critical concentrations (0.05 and 0.2 wt%) of xanthan gum solutions were observed resulting in three distinct regimes. The droplet diameter increased with increasing xanthan gum concentration within each regime but the transition through each critical concentration was accompanied by a significant reduction in the droplet size. Experimental results showed that the droplet formation time decreased exponentially with increasing continuous phase flow rate. It was also found that the formation time was reduced with increasing dispersed phase flow rate. Xanthan gum solutions with a higher concentration within each regime resulted in a longer formation time, and there was a decrease in the formation time at each critical concentration. The formation time consists of growth and breakup stages and the effect of xanthan gum concentration on each stage was examined.


1990 ◽  
Vol 18 (1) ◽  
pp. 13-65 ◽  
Author(s):  
W. W. Klingbeil ◽  
H. W. H. Witt

Abstract A three-component model for a belted radial tire, previously developed by the authors for free rolling without slip, is generalized to include longitudinal forces and deformations associated with driving and braking. Surface tractions at the tire-road interface are governed by a Coulomb friction law in which the coefficient of friction is assumed to be constant. After a brief review of the model, the mechanism of interfacial shear force generation is delineated and explored under traction with perfect adhesion. Addition of the friction law then leads to the inception of slide zones, which propagate through the footprint with increasing severity of maneuvers. Different behavior patterns under driving and braking are emphasized, with comparisons being given of sliding displacements, sliding velocities, and frictional work at the tire-road interface. As a further application of the model, the effect of friction coefficient and of test variables such as load, deflection, and inflation pressure on braking stiffness are computed and compared to analogous predictions on the braking spring rate.


1996 ◽  
Vol 34 (5-6) ◽  
pp. 201-211 ◽  
Author(s):  
Akiyoshi Ohashi ◽  
Hideki Harada

A novel methodology is proposed in this study to evaluate biofilm adhesion strength in two different ways: by measuring detached biomass caused by tensile force and by shear force. Tensile force was provided by centrifuging biofilm-attached plates installed on rotary tables. Shear force was provided by colliding biofilm-attached plates by gravity. Test biofilms consisting of denitrifiers were formed on the flat surfaces of square (25 cm2) plates that had been submerged in a rectangular open-channel reactor. The detachment tests revealed that, although biofilm adhesion strength was relatively high at the earlier growth stage, it drastically decreased at the later stage. The most weakened location toward biofilm depth was observed at the substratum surface, at which the adhesion strength by tensile force dropped from a several Pa to below 1 Pa as biofilms became aged. The adhesion strength by shear force was all the time more than 100 times as large as that by tensile force, even though having a similar behavior. The proportion of cavity, i.e., biofilm-absent area at the biofilm/substratum interface, increased as biofilms became mature. Cavity formation was strongly responsible for lessening the adhesion strength. It is suggested that biofilm slough-off is caused by the decline of adhesion strength by tensile force rather than by shear force.


Sign in / Sign up

Export Citation Format

Share Document