scholarly journals Microstructure Devices for Water Evaporation

Author(s):  
Juergen J. Brandner ◽  
Eugen Anurjew ◽  
Edgar Hansjosten ◽  
Stefan Maikowske ◽  
Ulrich Schygulla ◽  
...  

Evaporation of liquids is of major interest for many topics in process engineering. One of these is chemical process engineering, where evaporation of liquids and generation of superheated steam is mandatory for numerous processes. Generally, this is performed by use of classical pool boiling and evaporation process equipment. Another possibility is creating mixtures of gases and liquids, combined with a heating of this haze. Both methods provide relatively limited performance. Due to the advantages of microstructure devices especially in chemical process engineering [1] the interest in microstructure evaporators and steam generators have been increased through the last decade. In this publication several microstructure devices used for evaporation and generation of steam as well as superheating will be described. Here, normally electrically powered devices containing micro channels as well as non-channel microstructures are used due to better controllability of the temperature level. Micro channel heat exchangers have been designed, manufactured and tested at the Institute for Micro Process Engineering of the Karlsruhe Institute of Technology for more than 15 years. Starting with the famous Karlsruhe Cube, a cross-flow micro channel heat exchanger of various dimensions, not only conventional heat transfer between liquids or gases have been theoretically and experimentally examined but also phase transition from liquids to gases (evaporation) and condensation of liquids. However, the results obtained with sealed microstructure devices have often been unsatisfying. Thus, to learn more onto the evaporation process itself, an electrically powered device for optical inspection of the microstructures and the processes inside has been designed and manufactured [2]. This was further optimized and improved for better controllability and reliable experiments [3]. Exchangeable metallic micro channel array foils as well as an optical inspection of the evaporation process by high-speed videography have been integrated into the experimental setup. Fundamental research onto the influences of the geometry and dimensions of the integrated micro channels, the inlet flow distribution system geometry as well as the surface quality and surface coatings of the micro channels have been performed. While evaporation of liquids in crossflow and counterflow or co-current flow micro channel devices is possible, it is, in many cases, not possible to obtain superheated steam due to certain boundary conditions [4]. In most cases, the residence time is not sufficiently long, or the evaporation process itself can not be stabilized and controlled precisely enough. Thus, a new design was proposed to obtain complete evaporation and steam superheating. This microstructure evaporator consists of a concentric arrangement of semi-circular walls or semi-elliptic walls providing at least two nozzles to release the generated steam. The complete arrangement forms a row of circular blanks. An example of such geometry is shown in Figure 8. A maximum power density of 1400 kW · m−2 has been transferred using similar systems, while liquid could be completely evaporated and the generated steam superheated. This is, compared to liquid heat exchanges, a small value, but it has to be taken in account that the specific heat capacity of vapor is considerably smaller than that of liquids. It could also be shown that the arrangement in circular blanks with semi-elliptic side walls acts as a kind of micro mixer for the remaining liquid and generated steam and, therefore, enhances the evaporation.

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1097
Author(s):  
Francisco J. Hernández Fernández ◽  
Antonia Pérez de los Ríos

Sustainable chemical process engineering results from applying the principles of green chemistry or sustainable chemistry to chemical process engineering [...]


Author(s):  
Weilin Qu ◽  
Seok-Mann Yoon ◽  
Issam Mudawar

Knowledge of flow pattern and flow pattern transitions is essential to the development of reliable predictive tools for pressure drop and heat transfer in two-phase micro-channel heat sinks. In the present study, experiments were conducted with adiabatic nitrogen-water two-phase flow in a rectangular micro-channel having a 0.406 × 2.032 mm cross-section. Superficial velocities of nitrogen and water ranged from 0.08 to 81.92 m/s and 0.04 to 10.24 m/s, respectively. Flow patterns were first identified using high-speed video imaging, and still photos were then taken for representative patterns. Results reveal that the dominant flow patterns are slug and annular, with bubbly flow occurring only occasionally; stratified and churn flow were never observed. A flow pattern map was constructed and compared with previous maps and predictions of flow pattern transition models. Annual flow is identified as the dominant flow pattern for conditions relevant to two-phase micro-channel heat sinks, and forms the basis for development of a theoretical model for both pressure drop and heat transfer in micro-channels. Features unique to two-phase micro-channel flow, such as laminar liquid and gas flows, smooth liquid-gas interface, and strong entrainment and deposition effects are incorporated into the model. The model shows good agreement with experimental data for water-cooled heat sinks.


2006 ◽  
Author(s):  
Renqiang Xiong ◽  
J. N. Chung

Flow structures and pressure drops were investigated in rectangular serpentine micro-channels with miter bends which had hydraulic diameters of 0.209mm, 0.395mm and 0.549mm respectively. To evaluate the bend effect, the additional pressure drop due to the miter bend must be obtained. Three groups of micro-channels were fabricated to remove the inlet and outlet losses. A validated micro-particle image velocimetry (μPIV) system was used to achieve the flow structure in a serpentine micro-channel with hydraulic diameter of 0.173mm. The experimental results show the vortices around the outer and inner walls of the bend do not form when Re<100. Those vortices appear and continue to develop with the Re number when Re> 100-300, and the shape and size of the vortices almost remain constant when Re>1000. The bend loss coefficient Kb was observed to be related with the Re number when Re<100, with the Re number and channel size when Re>100. It almost keeps constant and changes in the range of ± 10% When Re is larger than some value in 1300-1500. And a size effect on Kb was also observed.


2013 ◽  
Vol 68 (12) ◽  
pp. 2545-2551 ◽  
Author(s):  
Jidong Teng ◽  
Noriyuki Yasufuku ◽  
Qiang Liu ◽  
Shiyu Liu

Simulating the dynamics of soil water content and modeling soil water evaporation are critical for many environmental and agricultural strategies. The present study aims to develop an analytical solution to simulate soil water redistribution during the evaporation process. This analytical solution was derived utilizing an exponential function to describe the relation of hydraulic conductivity and water content on pressure head. The solution was obtained based on the initial condition of saturation and an exponential function to model the change of surface water content. Also, the evaporation experiments were conducted under a climate control apparatus to validate the theoretical development. Comparisons between the proposed analytical solution and experimental result are presented from the aspects of soil water redistribution, evaporative rate and cumulative evaporation. Their good agreement indicates that this analytical solution provides a reliable way to investigate the interaction of evaporation and soil water profile.


2001 ◽  
Author(s):  
Jih-Hsing Tu ◽  
Fangang Tseng ◽  
Ching-Chang Chieng

Abstract Present study investigates the roughness effect on laminar gas flow for microchannels ranging from 40 to 600 μm with various roughness heights (40–82 nm) by systematical experiments. The micro-channels are manufactured by micro-machining technology and KOH anisotropic etching is employed to achieve various roughness patterns. Experimental results shows that higher product levels of Reynolds number (Reh) and friction factor (f) are obtained for microchannels of larger size and smaller relative roughness and friction factor f approaches to laminar flow theory value f0 for very smooth channel but the ratio of (f/f0) decreases as the surface roughness increases.


2020 ◽  
Vol 68 (4) ◽  
pp. 404-410
Author(s):  
Antoni M.C. Verdú ◽  
M. Teresa Mas ◽  
Ramon Josa ◽  
Marta Ginovart

AbstractOrganic hydromulches can be an interesting alternative for weed control in perennial crops, but can also reduce soil water evaporation. To examine the effect of a hydromulch layer on soil water content in dry conditions laboratory experiments were conducted at constant 25°C, 40% air RH. Both for small soil containers with a short time course and for larger soil columns (with two sensors at depths of 6 cm and 11 cm) with a longer time course, the presence and also the thickness of hydromulch were significant factors for the temporal evolution of soil water content. Two distinct stages of the evaporation process, the first or initial stage and the last or final stage, were identified, analysed and compared for these experiments. General linear models performed on the soil water content temporal evolutions showed significant differences for the first and last stages at the top and bottom of the soil columns with and without hydromulch. Hydromulch application delayed the evaporation process in comparison with the control. Moreover, the hydromulch layer, which was tested for mechanical resistance to punching, offered enough resistance to prevent its perforation by the sprouts of weed rhizomes.


Author(s):  
Gh. Reza Salehi ◽  
Masoud JalaliBidgoli ◽  
Saeed ZeinaliDanaloo ◽  
Kazem HasanZadeh

In this paper, distributions of velocity and flow rate of micro channels are studied. Moreover, the parameters which influence them were also discussed, as well as their effects and relevant curves. In the Analytical study, the governing equation in specific micro flows is obtained. This equation is specifically investigated for slip flow in two micro parallel plates (micro channel).At the next step numerical representation shows the influence of the related parameters in micro channel flow such as Knudsen number, thermal -accommodation coefficient, mass flow rate ratio and pressure ratio (outlet to inlet), Tangential Momentum Accommodation Coefficient with relative curves, and flow rate distribution in slippery state to no slip state has been compared as the another part of this solution. Finally, the results of investigating parameters and dimensionless numbers in micro channels are reviewed.


2006 ◽  
Vol 326-328 ◽  
pp. 265-268
Author(s):  
Taek Joon Son ◽  
Young Shin Lee

The strength of micro heat exchanger under pressure is studied in this paper. Micro heat exchanger is made with brazing technology. It is constructed of stainless steel thin plates with micro channels and in/out port for fluid flow. Micro channels in thin plates are formed by etching and all parts including thin plates are joined by brazing. The study on the strength under pressure is performed by structural analysis. For structural analysis, one layer of micro heat exchanger body is considered. It is composed of thin plate with micro channel and brazing filler which is used to join thin plates. This paper shows the tendency of stress behavior and gives design guideline of micro heat exchanger.


Sign in / Sign up

Export Citation Format

Share Document