An Experimental Study of a Synthetic Jet in Cross Flow in a Microchannel

Author(s):  
Alexander Sinclair ◽  
John Reizes ◽  
Victoria Timchenko ◽  
Gary Rosengarten

Laminar flow limits the mixing performance and heat transfer rates that occurs within microdevices. Synthetic jets in the microscale could disrupt laminar flow and improve the performance of such devices. In this paper a synthetic microjet integrated in a microchannel was designed and fabricated using micromachining techniques. The channel flow was driven by a syringe pump at a rate of 1.39μL/s and the device was actuated using a piezoceramic disc at a frequency of 600Hz. Flow fields were measured phase locked to the actuation cycle using the MicroPIV technique in the mid plane of the jet. The resultant fields revealed a jet with a largest velocity of 2.3m/s. The average velocity during expulsion was estimated to be 0.73m/s using a comparison to the oscillatory solution to flow in a square duct. Measurements at different phases in the cycle revealed a jet strong enough to impinge on the opposing wall and the growth and decay of a pair of vortices formed at the edge of the orifice. It was also shown that the synthetic jet significantly altered the flow patterns showing promising signs for enhancing mixing and heat transfer in microchannels.

Author(s):  
Farzad Bazdidi–Tehrani ◽  
Ali Saadniya ◽  
Soroush Rashidzadeh

Nowadays, synthetic jets have various applications such as cooling enhancement and active flow control. In the present paper, the capability of two turbulence modelling approaches in predicting thermal performance of an impinging synthetic jet is investigated. These two approaches are scale adaptive simulation (SAS) and detached eddy simulation (DES). Comparisons between numerical data and experimental studies reveal that the ability of DES in predicting the asymmetrical trend of heat transfer profiles is better than SAS in almost all the study cases. Although, near the stagnation zone, the performance of SAS is superior. Results show that the effects of parameters such as frequency, cross-flow velocity and suction duty cycle factor are well predicted by both approaches. An increase of cross-flow velocity from 1.81 m/s to 2.26 m/s results in an improvement of [Formula: see text] near the stagnation point by almost 16.3% and 9.2% using DES and SAS, respectively.


Author(s):  
Mehmet Arik ◽  
Yogen Utturkar ◽  
Mustafa Gursoy

Meso scale cooling devices have been of interest for low form factor, tight space, and high COP thermal management problems. A candidate meso scale device, known as synthetic jets, operates with micro fluidic principles and disturbs the boundary layer causing significant heat transfer over conventional free convective heat transfer in air. Previous papers have dealt with the impingement and cross flow, but did not study mixed convection for synthetic jet with natural convection. In the present study, we discuss the results of an experimental study to investigate the interplay between jet orientations with respect to gravity, elevated temperature conditions, and synthetic jet heat dissipation capacity. Experiments were performed by placing synthetic at different positions around a square, 25.4mm heated flat surface. The flow physics behind the experimental findings is discussed. It is found that impingement heat transfer outperformed more than 30% compared to other orientations. The jet showed about 15% sensitivity to angular orientations.


Author(s):  
Tim Persoons ◽  
Tadhg S. O’Donovan ◽  
Darina B. Murray

An impinging synthetic jet can attain heat transfer rates comparable to a continuous jet, without net mass input. However it needs a forced cross-flow to supply fresh cooling medium. The vectoring effect of adjacent synthetic jets allows directing the flow by changing the phase between the jets. This study uses the vectoring effect of two adjacent synthetic jets to draw in fresh air, while maintaining high impingement cooling performance. The experimental approach applies infrared thermography and particle image velocimetry to quantify the local convective heat transfer and flow field, respectively. The heat transfer profiles for various phase differences have been compared to the mean flow field and wall-normal velocity fluctuation intensity. For a fixed operating point (stroke length and Reynolds number) and geometry, the cooling performance has been optimised for phase and jet-to-surface spacing, resulting in about 90% enhancement of the maximum and overall cooling rate compared to a single jet, without the need for external cross-flow forcing.


Volume 4 ◽  
2004 ◽  
Author(s):  
Jivtesh Garg ◽  
Mehmet Arik ◽  
Stanton Weaver ◽  
Seyed Saddoughi

Micro fluidics devices are conventionally used for boundary layer control in many aerospace applications. Synthetic Jets are intense small scale turbulent jets formed from entrainment and expulsion of the fluid in which they are embedded. The idea of using synthetic jets in confined electronic cooling applications started in late 1990s. These micro fluidic devices offer very efficient, high magnitude direct air-cooling on the heated surface. A proprietary synthetic jet designed in General Electric Company was able to provide a maximum air velocity of 90 m/s from a 1.2 mm hydraulic diameter rectangular orifice. An experimental study for determining the thermal performance of a meso scale synthetic jet was carried out. The synthetic jets are driven by a time harmonic signal. During the experiments, the operating frequency for jets was set between 3 and 4.5 kHz. The resonance frequency for a particular jet was determined through the effect on the exit velocity magnitude. An infrared thermal imaging technique was used to acquire fine scale temperature measurements. A square heater with a surface area of 156 mm2 was used to mimic the hot component and extensive temperature maps were obtained. The parameters varied during the experiments were jet location, driving jet voltage, driving jet frequency and heater power. The output parameters were point wise temperatures (pixel size = 30 μm), and heat transfer enhancement over natural convection. A maximum of approximately 8 times enhancement over natural convection heat transfer was measured. The maximum coefficient of cooling performance obtained was approximately 6.6 due to the low power consumption of the synthetic jets.


Author(s):  
David M. Sykes ◽  
Andrew L. Carpenter ◽  
Gregory S. Cole

Microchannels and minichannels have been shown to have many potential applications for cooling high-heat-flux electronics over the past 3 decades. Synthetic jets can enhance minichannel performance by adding net momentum flux into a stream without adding mass flux. These jets are produced because of different flow patterns that emerge during the induction and expulsion stroke of a diaphragm, and when incorporated into minichannels can disrupt boundary layers and impinge on the far wall, leading to high heat transfer coefficients. Many researchers have examined the effects of synthetic jets in microchannels and minichannels with single-phase flows. The use of synthetic jets has been shown to augment local heat transfer coefficients by 2–3 times the value of steady flow conditions. In this investigation, local heat transfer coefficients and pressure loss in various operating regimes were experimentally measured. Experiments were conducted with a minichannel array containing embedded thermocouples to directly measure local wall temperatures. The experimental range extends from transitional to turbulent flows. Local wall temperature measurements indicate that increases of heat transfer coefficient of over 20% can occur directly below the synthetic jet with low exit qualities. In this study, the heat transfer augmentation by using synthetic jets was dictated by the momentum ratio of the synthetic jet to the bulk fluid flow. As local quality was increased, the heat transfer augmentation dropped from 23% to 10%. Surface tension variations had a large effect on the Nusselt number, while variations in inertial forces had a small effect on Nusselt number in this operating region.


Author(s):  
Yogen Utturkar ◽  
Mehmet Arik ◽  
Mustafa Gursoy

Synthetic jets are meso or micro fluidic devices, which operate on the “zero-net-mass-flux” principle. They impart a positive net momentum flux to the external environment, and are able to produce the cooling effect of a fan sans its ducting, reliability issues, and oversized dimensions. As a result, recently their application as electronics cooling devices is gaining momentum. Traditionally, synthetic jets have been sought as a replacement to the fan in many electronic devices. However, in certain large applications, complete replacement of the fan is not feasible, because it is necessary to provide the basic level of cooling over a large area of a printed assembly board. Such applications often pose a question whether synthetic jet would be able to locally provide reasonable enhancement over the forced convection of the fan flow. In the present study, we present the cooling performance of synthetic jets complementing forced convection from a fan. Both experiments and CFD computations are performed to investigate the interaction of the jet flowfield with a cross flow from fan. The inlet velocity, jet disk amplitude, and channel height are varied in the computational simulations to evaluate the impact of these changes on the cooling properties. Overall, both studies show that a synthetic jet is able to pulse and disrupt the boundary layer caused from fan flow, and improve heat transfer up to 4× over forced convection.


Author(s):  
S. Neelakantan ◽  
M. E. Crawford

A new model is developed to predict laterally-averaged film cooling. At the injection location, the near-hole region is leapt over and the injectant is distributed according to an existing jet in cross flow model and experimental data. The subsequent dispersion of the injectant is simulated to reflect the augmented mixing and the 3-dimensionality of the flow field. The new model is calibrated to predict effectiveness and heat transfer using the experimental data bases of Schmidt et al. (1994), Sen et al. (1994), Kohli et al. (1994), and Sinha et al. (1991). The geometries include injection angles of 35° and 55° with compound angles of 0° and 60° and hole spacings of 3 and 6 diameters. The new model yields improved effectiveness predictions over previous 2-D models.


Sign in / Sign up

Export Citation Format

Share Document