Interaction of Shock and Expansion Wave With Solid Particles in Supersonic Flows

Author(s):  
Ali Dolatabadi ◽  
Javad Mostaghimi ◽  
Valerian Pershin

Interaction of solid particles with shock and expansions in supersonic flows is analyzed. In this analysis, a dense cloud of solid particulates is modeled by using a fully Eulerian approach. The dispersed flow and the gas flow were considered in the Eulerian frame whereby most of the physical aspects of the gas-particle flow can be incorporated. In addition to the momentum and energy exchanges in the form of source terms appearing in the governing equations, the two phases were strongly coupled by considering the volume fraction of the particulate phase in the equations. The simulation performed for a High Velocity Oxy-Fuel (HVOF) process under typical operating conditions in which the powder loading is high and the two-phase flow is not dilute near the injection port. The simulations showed large variations in the flow regime in the region that most of the particles exist. Unlike the results corresponding to the Lagrangian approach, the flow becomes subsonic near the centerline and the drag force decreases significantly since the relative Mach number is small. The validation experiments showed that the variation of flow regime by changing the relative Mach number could significantly change the particle drag force, and consequently process efficiency.

2002 ◽  
Vol 56 (5) ◽  
pp. 198-203 ◽  
Author(s):  
Olivera Naseva ◽  
Ivica Stamenkovic ◽  
Ivana Bankovic-Ilic ◽  
Miodrag Lazic ◽  
Vlada Veljkovic ◽  
...  

The gas holdup was studied in non-newtonian liquids in a gas-liquid and gas-liquid-solid reciprocating plate bioreactor. Aqueous solutions of carboxy methyl cellulose (CMC; Lucel, Lucane, Yugoslavia) of different degrees of polymerization (PP 200 and PP 1000) and concentration (0,5 and 1%), polypropylene spheres (diameter 8.3 mm; fraction of spheres: 3.8 and 6.6% by volume) and air were used as the liquid, solid and gas phase. The gas holdup was found to be dependent on the vibration rate, the superficial gas velocity, volume fraction of solid particles and Theological properties of the liquid ohase. Both in the gas-liquid and gas-liquid-solid systems studied, the gas holdup increased with increasing vibration rate and gas flow rate. The gas holdup was higher in three-phase systems than in two-phase ones under otter operating conditions being the same. Generally the gas holdup increased with increasing the volume fraction of solid particles, due to the dispersion action of the solid particles, and decreased with increasing non-Newtonian behaviour (decreasing flow index) i.e. with increasing degree of polymerization and solution concentration of CMC applied, as a result of gas bubble coalescence.


1995 ◽  
Vol 05 (02) ◽  
pp. 191-211 ◽  
Author(s):  
LIONEL SAINSAULIEU

We consider a cloud of solid particles in a gas flow. The cloud is described by a probability density function which satisfies a kinetic equation. The gas flow is modeled by Navier-Stokes equations. The two phases exchange momentum and energy. We obtain the entropy balance of the gas flow and deduce some bounds for the volume fraction of the gas phase. Writing the entropy balance for the dispersed phase enables one to determine the particles equilibrium velocity distribution function when the gas flow is known.


2011 ◽  
Vol 383-390 ◽  
pp. 4955-4961
Author(s):  
Wen Jun Yao ◽  
Zheng Hao He ◽  
He Ming Deng

Multi-phase mixture (MPM) discharge has the common characteristics of randomness with air but more complex. How about the statistical rule of MPM discharge ? This is not only a fundamental problem for discharge research, but it has its own strong applied and practical characteristics. The air-solid two-phase mixtures(ASTPM) are employed to study and carry out some experiments for investigating the development and breakdown of MPM discharge under AC voltage. The results from experimental data show that the AC breakdown voltage and corona-inception voltage will drop when the solid particles are added to the discharge chamber with different permittivity and volume fraction. And there is no influence in gas flow and the corona current.


Author(s):  
Marcos F. Cargnelutti ◽  
Stefan P. C. Belfroid ◽  
Wouter Schiferli ◽  
Marlies van Osch

Air-water experiments were carried out in a horizontal 1″ pipe system to measure the magnitude of the forces induced by the multiphase flow. Forces and accelerations were measured on a number of bends and T-joint configurations for a wide range of operating conditions. Five different configurations were measured: a baseline case consisting of straight pipe only, a sharp edged bend, a large radius bend, a symmetric T-joint and a T-joint with one of the arms closed off. The gas flow was varied from a superficial velocity of 0.1 to 30 m/s and the liquid flow was varied from 0.05 to 2 m/s. This operating range ensures that the experiment encompasses all possible flow regimes. In general, the slug velocity and frequency presented a reasonable agreement with classical models. However, for high mixture velocity the measured frequency deviated from literature models. The magnitude of the measured forces was found to vary over a wide range depending on the flow regime. For slug flow conditions very high force levels were measured, up to 4 orders of magnitude higher than in single phase flow for comparable velocities. The annular flow regime resulted in the (relative) lowest forces, although the absolute amplitude is of the same order as in the case of slug flow. These results from a one inch pipe were compared to data obtained previously from similar experiments on a 6mm setup, to evaluate the scaling effects. The results for the one inch rig experiments agreed with the model proposed by Riverin, with the same scaling factor. A modification of this scaling factor is needed for the model to predict the forces measured on the 6mm rig. The validity of the theories developed based on the 6mm experiments were tested for validity at larger scales. In case of slug flow, the measured results can be described assuming a simple slug unit model. In annular and stratified flow a different model is required, since no slug unit is present. Instead, excitation force can be estimated using mixture properties. This mixture approach also describes the forces for the slug regime relatively well. Only the single phase flow is not described properly with this mixture model, as would be expected.


Author(s):  
Hisanori Yagami ◽  
Tomomi Uchiyama

The behavior of small solid particles falling in an unbounded air is simulated. The particles, initially arranged within a spherical region in a quiescent air, are made to fall, and their fall induces the air flow around them, resulting in the gas-particle two-phase flow. The particle diameter and density are 1 mm and 7.7 kg/m3 respectively. A three-dimensional vortex method proposed by one of the authors is applied. The simulation demonstrates that the particles are accelerated by the induced downward air flow just after the commencement of their fall. It also highlights that the particles are whirled up by a vortex ring produced around the downward air flow after the acceleration. The effect of the particle volume fraction at the commencement of the fall is also explored.


Author(s):  
Chungpyo Hong ◽  
Toru Yamada ◽  
Yutaka Asako ◽  
Mohammad Faghri ◽  
Koichi Suzuki ◽  
...  

This paper presents experimental results on flow characteristics of laminar, transitional to turbulent gas flows through micro-channels. The experiments were performed for three micro-channels. The micro-channels were etched into silicon wafers, capped with glass, and their hydraulic diameter are 69.48, 99.36 and 147.76 μm. The pressure was measured at seven locations along the channel length to determine local values of Mach number and friction factor for a wide range of flow regime from laminar to turbulent flow. Flow characteristics in transitional flow regime to turbulence were obtained. The result shows that f·Re is a function of Mach number and higher than incompressible value due to the compressibility effect. The values of f·Re were compared with f·Re correlations in available literature.


2020 ◽  
Vol 105 (4) ◽  
pp. 1035-1054
Author(s):  
Paolo Sassi ◽  
Youssef Stiriba ◽  
Julia Lobera ◽  
Virginia Palero ◽  
Jordi Pallarès

AbstractThe dynamics of three-phase flows involves phenomena of high complexity whose characterization is of great interest for different sectors of the worldwide industry. In order to move forward in the fundamental knowledge of the behavior of three-phase flows, new experimental data has been obtained in a facility specially designed for flow visualization and for measuring key parameters. These are (1) the flow regime, (2) the superficial velocities or rates of the individual phases; and (3) the frictional pressure loss. Flow visualization and pressure measurements are performed for two and three-phase flows in horizontal 30 mm inner diameter and 4.5 m long transparent acrylic pipes. A total of 134 flow conditions are analyzed and presented, including plug and slug flows in air–water two-phase flows and air–water-polypropylene (pellets) three-phase flows. For two-phase flows the transition from plug to slug flow agrees with the flow regime maps available in the literature. However, for three phase flows, a progressive displacement towards higher gas superficial velocities is found as the solid concentration is increased. The performance of a modified Lockhart–Martinelli correlation is tested for predicting frictional pressure gradient of three-phase flows with solid particles less dense than the liquid.


2014 ◽  
Vol 62 (3) ◽  
pp. 234-240 ◽  
Author(s):  
Gianandrea Vittorio Messa ◽  
Stefano Malavasi

Abstract The flow of a mixture of liquid and solid particles at medium and high volume fraction through an expansion in a rectangular duct is considered. In order to improve the modelling of the phenomenon with respect to a previous investigation (Messa and Malavasi, 2013), use is made of a two-fluid model specifically derived for dense flows that we developed and implemented in the PHOENICS code via user-defined subroutines. Due to the lack of experimental data, the two-fluid model was validated in the horizontal pipe case, reporting good agreement with measurements from different authors for fully-suspended flows. A 3D system is simulated in order to account for the effect of side walls. A wider range of the parameters characterizing the mixture (particle size, particle density, and delivered solid volume fraction) is considered. A parametric analysis is performed to investigate the role played by the key physical mechanisms on the development of the two-phase flow for different compositions of the mixture. The main focuses are the distribution of the particles in the system and the pressure recovery


Author(s):  
Deepak Nabapure ◽  
Ram Chandra Murthy K

Rarefied gas flow over a backward-facing step (BFS) is often encountered in separating flows prevalent in aerodynamic flows, engine flows, condensers, space vehicles, heat transfer systems, and microflows. Direct Simulation Monte Carlo (DSMC) is a powerful tool to investigate such flows. The purpose of this research is to assess the impact of Mach number and wall temperature on the flow and surface properties in the transitional flow regime. The Mach numbers considered are 5, 10, 25, 30, and the ratio of the temperature of the wall to that of freestream considered are 1, 2, 4, 8. The Reynolds number for the cases studied is 8.6, 17.2, 43, and 51.7, respectively. Typically the flow properties near the wall are found to increase with both Mach number and wall temperature owing to compressibility and viscous dissipation effects. The variation in flow properties is more sensitive to Mach number than the wall temperature. The surface properties are found to decrease with Mach number and increase with wall temperature. Moreover, in the wake of the step, the vortex’s recirculation length is reasonably independent of both free stream Mach number and wall temperature, whereas it decreases with Knudsen number.


Sign in / Sign up

Export Citation Format

Share Document