Experimental Investigation on Air-Solid Two-Phase Mixture Discharge under AC Voltage

2011 ◽  
Vol 383-390 ◽  
pp. 4955-4961
Author(s):  
Wen Jun Yao ◽  
Zheng Hao He ◽  
He Ming Deng

Multi-phase mixture (MPM) discharge has the common characteristics of randomness with air but more complex. How about the statistical rule of MPM discharge ? This is not only a fundamental problem for discharge research, but it has its own strong applied and practical characteristics. The air-solid two-phase mixtures(ASTPM) are employed to study and carry out some experiments for investigating the development and breakdown of MPM discharge under AC voltage. The results from experimental data show that the AC breakdown voltage and corona-inception voltage will drop when the solid particles are added to the discharge chamber with different permittivity and volume fraction. And there is no influence in gas flow and the corona current.

2012 ◽  
Vol 446-449 ◽  
pp. 3803-3809
Author(s):  
Hooman Hoornahad ◽  
Eduard A. B. Koenders

The common approach to describe the rheological behavior of a granular-paste material relies on a description of the motion within the frame of continuum mechanics. However, since a granular-paste system cannot be considered as a homogeneous continuous fluid its behavior should not be estimated by common fluid models, such as Bingham or Herschell Bulkley models. Therefore, a continuum approach is not considered the best option to study the phase effects of a multi-phase material and its corresponding rheological behavior. In this particular case analytical techniques based on the multi-phase models are required. A more appropriate approach is to consider a granular-paste material as a two phase model that accounts for the effect of the gradually decreasing the volume fraction of the pasty phase until getting to zero value on the rheological behavior of the material. In this investigation, a cone test is used to evaluate the rheological behavior of a granular mix where a discrete element method (DEM) is considered as a basis of the numerical simulation.


1995 ◽  
Vol 05 (02) ◽  
pp. 191-211 ◽  
Author(s):  
LIONEL SAINSAULIEU

We consider a cloud of solid particles in a gas flow. The cloud is described by a probability density function which satisfies a kinetic equation. The gas flow is modeled by Navier-Stokes equations. The two phases exchange momentum and energy. We obtain the entropy balance of the gas flow and deduce some bounds for the volume fraction of the gas phase. Writing the entropy balance for the dispersed phase enables one to determine the particles equilibrium velocity distribution function when the gas flow is known.


Author(s):  
Ali Dolatabadi ◽  
Javad Mostaghimi ◽  
Valerian Pershin

Interaction of solid particles with shock and expansions in supersonic flows is analyzed. In this analysis, a dense cloud of solid particulates is modeled by using a fully Eulerian approach. The dispersed flow and the gas flow were considered in the Eulerian frame whereby most of the physical aspects of the gas-particle flow can be incorporated. In addition to the momentum and energy exchanges in the form of source terms appearing in the governing equations, the two phases were strongly coupled by considering the volume fraction of the particulate phase in the equations. The simulation performed for a High Velocity Oxy-Fuel (HVOF) process under typical operating conditions in which the powder loading is high and the two-phase flow is not dilute near the injection port. The simulations showed large variations in the flow regime in the region that most of the particles exist. Unlike the results corresponding to the Lagrangian approach, the flow becomes subsonic near the centerline and the drag force decreases significantly since the relative Mach number is small. The validation experiments showed that the variation of flow regime by changing the relative Mach number could significantly change the particle drag force, and consequently process efficiency.


2002 ◽  
Vol 56 (5) ◽  
pp. 198-203 ◽  
Author(s):  
Olivera Naseva ◽  
Ivica Stamenkovic ◽  
Ivana Bankovic-Ilic ◽  
Miodrag Lazic ◽  
Vlada Veljkovic ◽  
...  

The gas holdup was studied in non-newtonian liquids in a gas-liquid and gas-liquid-solid reciprocating plate bioreactor. Aqueous solutions of carboxy methyl cellulose (CMC; Lucel, Lucane, Yugoslavia) of different degrees of polymerization (PP 200 and PP 1000) and concentration (0,5 and 1%), polypropylene spheres (diameter 8.3 mm; fraction of spheres: 3.8 and 6.6% by volume) and air were used as the liquid, solid and gas phase. The gas holdup was found to be dependent on the vibration rate, the superficial gas velocity, volume fraction of solid particles and Theological properties of the liquid ohase. Both in the gas-liquid and gas-liquid-solid systems studied, the gas holdup increased with increasing vibration rate and gas flow rate. The gas holdup was higher in three-phase systems than in two-phase ones under otter operating conditions being the same. Generally the gas holdup increased with increasing the volume fraction of solid particles, due to the dispersion action of the solid particles, and decreased with increasing non-Newtonian behaviour (decreasing flow index) i.e. with increasing degree of polymerization and solution concentration of CMC applied, as a result of gas bubble coalescence.


Author(s):  
Hisanori Yagami ◽  
Tomomi Uchiyama

The behavior of small solid particles falling in an unbounded air is simulated. The particles, initially arranged within a spherical region in a quiescent air, are made to fall, and their fall induces the air flow around them, resulting in the gas-particle two-phase flow. The particle diameter and density are 1 mm and 7.7 kg/m3 respectively. A three-dimensional vortex method proposed by one of the authors is applied. The simulation demonstrates that the particles are accelerated by the induced downward air flow just after the commencement of their fall. It also highlights that the particles are whirled up by a vortex ring produced around the downward air flow after the acceleration. The effect of the particle volume fraction at the commencement of the fall is also explored.


2014 ◽  
Vol 62 (3) ◽  
pp. 234-240 ◽  
Author(s):  
Gianandrea Vittorio Messa ◽  
Stefano Malavasi

Abstract The flow of a mixture of liquid and solid particles at medium and high volume fraction through an expansion in a rectangular duct is considered. In order to improve the modelling of the phenomenon with respect to a previous investigation (Messa and Malavasi, 2013), use is made of a two-fluid model specifically derived for dense flows that we developed and implemented in the PHOENICS code via user-defined subroutines. Due to the lack of experimental data, the two-fluid model was validated in the horizontal pipe case, reporting good agreement with measurements from different authors for fully-suspended flows. A 3D system is simulated in order to account for the effect of side walls. A wider range of the parameters characterizing the mixture (particle size, particle density, and delivered solid volume fraction) is considered. A parametric analysis is performed to investigate the role played by the key physical mechanisms on the development of the two-phase flow for different compositions of the mixture. The main focuses are the distribution of the particles in the system and the pressure recovery


Fractals ◽  
2010 ◽  
Vol 18 (01) ◽  
pp. 53-64 ◽  
Author(s):  
MAOFEI MEI ◽  
BOMING YU ◽  
JIANCHAO CAI ◽  
LIANG LUO

The size distributions of solid particles and pores in porous media are approximately hierarchical and statistically fractals. In this paper, a model for single-phase fractal media is constructed, and the analytical expressions for area, fractal dimension and distribution function for solid particles are derived. The distribution function of solid particles obtained from the proposed model is in good agreement with available experimental data. Then, a model for approximate two-phase fractal media is developed. Good agreement is found between the predicted fractal dimensions for pore space from the two-phase fractal medium model and the existing measured data. A model for approximate three-phase fractal media is also presented by extending the obtained two-phase model.


Author(s):  
Masahiro Kawaji

High quality semi-conductor and protein crystals can be grown in space by utilizing the microgravity environment in which natural convection and sedimentation effects are suppressed. But some vibrations exist on space platforms such as Space Shuttle and International Space Station that can induce crystal and fluid motions, affecting the quality of the crystals grown in space. Since the effects of small vibrations (called g-jitter) on crystal growth are not yet precisely known in space, experimental and theoretical investigations are being conducted to better understand the vibration effects on the motion of protein crystals and solid particles in liquid-filled cells. Another topic under investigation is the operation of pulsating heat pipes under microgravity. A recent experiment performed on a parabolic airplane has shown the positive effect of reduced gravity on the pulsating motion of vapour-liquid two-phase flow and heat transport in pulsating heat pipes.


2007 ◽  
Vol 9 (6) ◽  
pp. 695-697 ◽  
Author(s):  
He Zhenghao ◽  
Xu Huaili ◽  
Bai Jing ◽  
Yu Fusheng ◽  
Hu Feng ◽  
...  

1999 ◽  
Author(s):  
Y. L. Hao ◽  
Y.-X. Tao

Abstract A physical model of two-phase flow and heat-mass transfer with the phase changes based on the theory of interacting continua is proposed. All terms in the conservation equations are analyzed and the constitutive equations are presented. A closed set of governing equations describing the convective melting of solid particles in a fluid is obtained. The numerical method is developed for the solution of velocity, temperature, and volume fraction of solid phase for the three-dimensional melting in a rectangular cross-section channel. Preliminary calculation, including gravity effects, shows that the result is reasonable. This study provides a basis for the theoretical and experimental investigation of convective melting of solid particles in a fluid.


Sign in / Sign up

Export Citation Format

Share Document