scholarly journals Experimental Investigation of Flow Instabilities and Rotating Stall in a High-Energy Centrifugal Pump Stage

Author(s):  
Stefan Berten ◽  
Philippe Dupont ◽  
Laurent Fabre ◽  
Maher Kayal ◽  
Francois Avellan ◽  
...  

In centrifugal pumps, the interaction between the rotating impeller and the stationary diffuser generates specific pressure fluctuation patterns. When the pump is operated at off design conditions, these pressure fluctuations increase. The resulting rise of mechanical vibration levels may negatively affect the operational performance and the life span of mechanical components. This paper presents detailed pressure fluctuation measurements performed in a high speed centrifugal pump stage at full scale at various operating conditions. The impeller and stationary part (diffuser, exit chamber) of the pump stage have been equipped with piezoresistive miniature pressure sensors. The measured data in the impeller have been acquired using a newly developed onboard data acquisition system, designed for rotational speeds up to 6000 rpm. The measurements have been performed synchronously in the rotating and stationary domains. The analysis of pressure fluctuations at the impeller blade trailing edge, which had significantly larger amplitudes as the pressure fluctuations in the stationary domain, allowed the detection and exploration of stalled channels in the vaned diffuser. This stall may be stationary or rotating with different rotational speeds and number of stalled channels, depending on the relative flow rate and the rotational speed of the pump. The stall yields pressure fluctuations at frequencies which are multiples of the rotational speed of the impeller and generates additional sources of mechanical excitation.

Processes ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 354 ◽  
Author(s):  
Ling Bai ◽  
Ling Zhou ◽  
Chen Han ◽  
Yong Zhu ◽  
Weidong Shi

A pump is one of the most important machines in the processes and flow systems. The operation of multistage centrifugal pumps could generate pressure fluctuations and instabilities that may be detrimental to the performance and integrity of the pump. In this paper, a numerical study of the influence of pressure fluctuations and unsteady flow patterns was undertaken in the pump flow channel of three configurations with different diffuser vane numbers. It was found that the amplitude of pressure fluctuation in the diffuser was increased gradually with the increase in number of diffuser vanes. The lower number of diffuser vanes was beneficial to obtain a weaker pressure fluctuation intensity. With the static pressure gradually increasing, the effects of impeller blade passing frequency attenuated gradually, and the effect of diffuser vanes was increased gradually.


2019 ◽  
Vol 36 (4) ◽  
pp. 401-410 ◽  
Author(s):  
Xiao-Qi Jia ◽  
Bao-Ling Cui ◽  
Zu-Chao Zhu ◽  
Yu-Liang Zhang

Abstract Affected by rotor–stator interaction and unstable inner flow, asymmetric pressure distributions and pressure fluctuations cannot be avoided in centrifugal pumps. To study the pressure distributions on volute and front casing walls, dynamic pressure tests are carried out on a centrifugal pump. Frequency spectrum analysis of pressure fluctuation is presented based on Fast Fourier transform and steady pressure distribution is obtained based on time-average method. The results show that amplitudes of pressure fluctuation and blade-passing frequency are sensitive to the flow rate. At low flow rates, high-pressure region and large pressure gradients near the volute tongue are observed, and the main factors contributing to the pressure fluctuation are fluctuations in blade-passing frequency and high-frequency fluctuations. By contrast, at high flow rates, fluctuations of rotating-frequency and low frequencies are the main contributors to pressure fluctuation. Moreover, at low flow rates, pressure near volute tongue increases rapidly at first and thereafter increases slowly, whereas at high flow rates, pressure decreases sharply. Asymmetries are observed in the pressure distributions on both volute and front casing walls. With increasing of flow rate, both asymmetries in the pressure distributions and magnitude of the pressure decrease.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1408 ◽  
Author(s):  
Bin Huang ◽  
Guitao Zeng ◽  
Bo Qian ◽  
Peng Wu ◽  
Peili Shi ◽  
...  

The pressure fluctuation inside centrifugal pumps is one of the main causes of hydro-induced vibration, especially at the blade-passing frequency and its harmonics. This paper investigates the feature of blade-passing frequency excitation in a low-specific-speed centrifugal pump in the perspective of local Euler head distribution based on CFD analysis. Meanwhile, the relation between local Euler head distribution and pressure fluctuation amplitude is observed and used to explain the mechanism of intensive pressure fluctuation. The impeller blade with ordinary trailing edge profile, which is the prototype impeller in this study, usually induces wake shedding near the impeller outlet, making the energy distribution less uniform. Because of this, the method of reducing pressure fluctuation by means of improving Euler head distribution uniformity by modifying the impeller blade trailing edge profile is proposed. The impeller blade trailing edges are trimmed in different scales, which are marked as model A, B, and C. As a result of trailing edge trimming, the impeller outlet angles at the pressure side of the prototype of model A, B, and C are 21, 18, 15, and 12 degrees, respectively. The differences in Euler head distribution and pressure fluctuation between the model impellers at nominal flow rate are investigated and analyzed. Experimental verification is also conducted to validate the CFD results. The results show that the blade trailing edge profiling on the pressure side can help reduce pressure fluctuation. The uniformity of Euler head circumferential distribution, which is directly related to the intensity of pressure fluctuation, is improved because the impeller blade outlet angle on the pressure side decreases and thus the velocity components are adjusted when the blade trailing edge profile is modified. The results of the investigation demonstrate that blade trailing edge profiling can be used in the vibration reduction of low specific impellers and in the engineering design of centrifugal pumps.


Author(s):  
Zhifeng Yao ◽  
Min Yang ◽  
Ruofu Xiao ◽  
Fujun Wang

The unsteady flow field and pressure fluctuations in double-suction centrifugal pumps are greatly affected by the wall roughness of internal surfaces. To determine the wall roughness effect, numerical and experimental investigations were carried out. Three impeller schemes for different wall roughness were solved using detached eddy simulation, and the performance and pressure fluctuations resolved by detached eddy simulation were compared with the experimental data. The results show that the effects of wall roughness on the static performance of a pump are remarkable. The head and efficiency of the tested double-suction centrifugal pump are raised by 2.53% and 6.60% respectively as the wall roughness is reduced by means of sand blasting and coating treatments. The detached eddy simulation method has been proven to be accurate for the prediction of the head and efficiency of the double-suction centrifugal pump with roughness effects. The influence of the roughness on pressure fluctuation is greatly dependent on the location relative to the volute tongue region. For locations close to the volute tongue, the peak-to-peak value of the pressure fluctuations of a wall roughness of Ra = 0.10 mm may be 23.27% larger than the case where Ra = 0.02 mm at design flow rate.


Author(s):  
Ahmed Ramadhan Al-Obaidi ◽  
Ali Qubian

Abstract In this current study, the transient numerical calculations using CFD code are carried out under different outlet impeller diameters for the flow field within a centrifugal pump under single-phase and cavitation conditions. Both qualitative and quantitative analyses are carried out on all of these results in order to better understand the flow structure within a centrifugal pump. Also, the investigations using different outlet impeller diameters configurations relating to the static pressure, velocity magnitude, vapour volume fraction variations, as well as pressure fluctuations in both time and frequency domain at the impeller and volute of the pump are analysed. Velocity and static pressure variations of the pump under different outlet impeller diameters range (200, 210 and 220 mm) are investigated. Reliable model is developed and validated, at various pump operating conditions, to analyse the characteristics of pressure fluctuations in both time and frequency domain. Cavitation occurrence, under different outlet impeller diameters and flow rates, are detected and correlated, using a CFD model (volume fraction distributions). Based on the developed model’s findings, at the set operating conditions ranges, the distribution and impact (cavitation and head-wises) of both the pressure and velocity are analysed. The average pressure fluctuation in the volute for do = 210 mm is higher than for do = 200 mm by about 6.74%, also the maximum pressure fluctuation for do = 220 mm is higher than for do = 210 mm by around 7.4%. Furthermore, the maximum pressure fluctuation in the impeller for do = 210 mm is higher than for do = 200 mm by 12.48%, also for do = 220 mm is higher than for do = 210 mm by 10.8%. The developed CFD models are proved valuable tools in identifying and optimizing the pump performance and characterization. The head for when do = 220 mm is higher than for when do = 200 mm under both single-phase and cavitation conditions by around 14.13% and 14.69%. The maximum pressure fluctuation for do = 200 mm is lower than for do = 210 mm by 41.58%. Furthermore, the maximum pressure fluctuation at the impeller for do = 220 mm is higher than the two models. There is a small clearance between the impeller and the volute for this model, leading to the pressure fluctuation amplitudes being higher than the other above models.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Lei Cao ◽  
Zhengwei Wang ◽  
Yexiang Xiao ◽  
Yongyao Luo

Clearance flows in the sidewall gaps of centrifugal pumps are unsteady as well as main flows in the volute casing and impeller, which may cause vibration and noise, and the corresponding pressure fluctuations are related to the axial clearance size. In this paper, unsteady numerical simulations were conducted to predict the unsteady flows within the entire flow passage of a centrifugal pump operating in the design condition. Pressure fluctuation characteristics in the volute casing, impeller, and sidewall gaps were investigated with three axial clearance sizes. Results show that an axial clearance variation affects the pressure fluctuation characteristics in each flow domain by different degree. The greatest pressure fluctuation occurs at the blade pressure surface and is almost not influenced by the axial clearance variation which has a certainly effect on the pressure fluctuation characteristics around the tongue. The maximum pressure fluctuation amplitude in the sidewall gaps is larger than that in the volute casing, and different spectrum characteristics show up in the three models due to the interaction between the clearance flow and the main flow as well as the rotor-stator interaction. Therefore, clearance flow should be taken into consideration in the hydraulic design of centrifugal pumps.


Author(s):  
H. C. Simpson ◽  
R. Macaskill ◽  
T. A. Clark

The production of hydraulic noise by two types of centrifugal pumps—volute pumps and diffuser pumps—was examined to determine the effect of design and operating conditions on the level of noise generated in the pumped liquid. Experimental work with hydrophones in the exit and entrance to the pumps showed that for both pumps, the dominant frequencies in the noise spectrum were at rotational speed and blade number times rotational speed. It was also found that the distance between cutwater and impeller tip is critical in a volute pump as far as blade frequency noise is concerned. Analysis of the relation between the noise measured by the hydrophones and the fluctuating pressure produced by the pump and the water flow in the inlet and outlet ducts showed that the noise can be interpreted as being directly related to the unsteady flow of water issuing from the impeller. Test results of blade frequency noise levels were correlated with a theoretical analysis for static pressure fluctuations in the pump exit and were shown to be in good agreement. A correlation of general hydraulic noise level with pump specific speed and power consumption was also developed and shown to be reliable to within +2 dB.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Yongshun Zeng ◽  
Zhifeng Yao ◽  
Fujun Wang ◽  
Ruofu Xiao ◽  
Chenglian He

Abstract The reduction in pressure fluctuation can suppress noise, balance the radial and axial forces, and restrain the vibration level of a centrifugal pump. Impeller stagger and blade geometry influence the pressure fluctuation characteristics of double suction centrifugal pumps. In the present investigation, the pressure fluctuation characteristics of the baseline impeller, the staggered impeller, and the blade geometry modified impeller were investigated experimentally under design and off-design operating conditions. The frequency spectrum was analyzed by fast Fourier transform (FFT) and continuous wavelet transform (CWT) methods. The broadband frequencies are defined quantitatively and analyzed emphatically. The significant linear relationship between the center frequency of the broadband frequencies and the flowrate is discovered for the first time. The center frequency decreases as the flowrate increases. The linearity varies below and above the design flowrate. When the discrete frequencies are in range of the broadband frequencies, a high amplitude of pressure fluctuation occurs. This could explain the large peak-to-peak value of the pressure fluctuation at 1.24Qn, which may be due to the coincidence between broadband frequencies and the components at the frequencies fr and 2fr. Both the staggered impeller and the blade geometry modified impeller can reduce the level of pressure fluctuation; in particular, it is reduced to 35% and 13% compared to that of baseline impeller near the volute tongue region under the design flowrate, respectively. The staggered impeller and the blade geometry can obviously affect the decreasing slopes between the center frequencies and the flowrate.


Author(s):  
Qianqian Li ◽  
Shiyang Li ◽  
Peng Wu ◽  
Bin Huang ◽  
Dazhuan Wu

AbstractDouble-suction centrifugal pumps have been applied extensively in many areas, and the significance of pressure fluctuations inside these pumps with large power is becoming increasingly important. In this study, a double-suction centrifugal pump with a high-demand for vibration and noise was redesigned by increasing the flow uniformity at the impeller discharge, implemented by combinations of more than two parameters. First, increasing the number of the impeller blades was intended to enhance the bounding effect that the blades imposed on the fluid. Subsequently, increasing the radial gap between the impeller and volute was applied to reduce the rotor-stator interaction. Finally, the staggered arrangement was optimized to weaken the efficacy of the interference superposition. Based on numerical simulation, the steady and unsteady characteristics of the pump models were calculated. From the fluctuation analysis in the frequency domain, the dimensionless pressure fluctuation amplitude at the blade passing frequency and its harmonics, located on the monitoring points in the redesigned pumps (both with larger radial gap), are reduced a lot. Further, in the volute of the model with new impellers staggered at 12°, the average value for the dimensionless pressure fluctuation amplitude decreases to 6% of that in prototype pump. The dimensionless root-mean-square pressure contour on the mid-span of the impeller tends to be more uniform in the redesigned models (both with larger radial gap); similarly, the pressure contour on the mid-section of the volute presents good uniformity in these models, which in turn demonstrating a reduction in the pressure fluctuation intensity. The results reveal the mechanism of pressure fluctuation reduction in a double-suction centrifugal pump, and the results of this study could provide a reference for pressure fluctuation reduction and vibration performance reinforcement of double-suction centrifugal pumps and other pumps.


Author(s):  
Giulio Elicio ◽  
Francesco Annese

Abstract The residual axial thrust of a centrifugal pump is the vector resultant of the hydraulic components of impellers and sleeves, the momentum force and other imbalance forces and is bear by the thrust bearing. Among all the components, the hydraulic is by far the most important because it is typically one order of magnitude bigger than the others and the final residual axial thrust itself; but it is also the most difficult to calculate or estimate. This is mainly due a lot of uncertainties in the definition of the pressure distribution in the sidewall gap, dependent on the rotational speed, the leakages through the annular seals, the inlet swirl to the sidewall, the axial alignment of the impeller with the stator, the geometric tolerances and the pump operation. In this paper an experimental approach to validate and calibrate the formulation to predict the hydraulic component of the impellers is presented. The typical formulation to evaluate the parabolic behavior of the pressure distribution is based on a series of coefficients, coming from literature, to consider all the above-mentioned influences. This formulation can be considered satisfying when dealing with pumps with back-to-back arrangement of the impellers on the rotor, since the hydraulic components are almost balanced. But with in-line configuration, all the hydraulic components of the impellers act against one direction and most of their force can be balanced by means of a balance drum, much more reliable than a balance disk. An experimental test campaign on a high energy diffuser pump was performed. The pump was equipped with load cells and temperature probes on the thrust bearing, and a special balancing line with a regulating bleed-off valve whose aim was to partialize the flowrate routed from the back side of the balancing drum to the suction. By throttling the bleed-off valve, it was possible to measure the hydraulic components of the impellers in very different operating conditions of the balancing drum, at different rotational speed and at different flowrates included zero residual axial thrust capability. As results of this campaign, once calibrated the coefficients on the full-scale pump, it is possible to calculate the residual axial thrust based on specific pressure measurements of the model test of a stage hydraulic; this also allows a thorough optimization of the thrust bearing selection.


Sign in / Sign up

Export Citation Format

Share Document