Evaluation of Effect of Viscosity on an Electrical Submersible Pump

Author(s):  
Gerald Morrison ◽  
Wenjie Yin ◽  
Rahul Agarwal ◽  
Abhay Patil

Understanding and predicting the effect of viscosity change on an Electrical Submersible Pump (ESP) performance is of great significance to the oil and gas operators. The purpose of this research is to investigate the flow behavior inside a mixed flow type pump operating with fluids of different viscosities using Computational Fluid Dynamics (CFD) with the goal to establish additional terms for the pump affinity laws to scale pump performance including the effects of viscosity. Several sets of fluids of different viscosities and densities are simulated under various operating conditions. The effect of viscosity on the performance of the impeller and diffuser is discussed. Changes in the pump performance due to fluid viscosity are characterized using the dimensionless flow coefficient, head coefficient and rotational Reynolds number. The result, which can be regarded as the modified pump affinity laws for viscosity flows, was obtained based on the relationships between dimensionless coefficients. The modified affinity laws agreed well with the CFD results. Further study was conducted to validate the relationships using previously published test data for a semi axial pump design (Specific Speed, Ns: 3869) tested with fluid viscosity ranging from 1 cp to 1020 cp and in-house testing of a split vane impeller pump (Ns: 3027) and a helicoaxial pump (Ns: 5281) using 1cp and 5 cp viscosity fluid. The modified affinity laws accurately models the performance dependence upon viscosity. As with the standard affinity laws, a pump’s functional relationship varies with each pump design. Yet the modified affinity laws produce a single common curve for all operating conditions and viscosities for a specific pump.

2018 ◽  
Vol 140 (9) ◽  
Author(s):  
Gerald Morrison ◽  
Wenjie Yin ◽  
Rahul Agarwal ◽  
Abhay Patil

The purpose of this research is to investigate the flow behavior inside a mixed flow type pump operating with fluids of different viscosities using computational fluid dynamics (CFD) with the goal to establish additional terms for the pump affinity laws to scale pump performance including the effects of viscosity. Several sets of fluids of different viscosities and densities are simulated under various operating conditions. The effect of viscosity on the performance of the impeller and diffuser is discussed. Changes in the pump performance due to fluid viscosity are characterized using the dimensionless flow coefficient, head coefficient, and rotational Reynolds number. The result, which can be regarded as the modified pump affinity laws for viscosity flows, was obtained based on the relationships between dimensionless coefficients. The modified affinity laws agreed well with the CFD results. Further study was conducted to validate the relationships using previously published test data for a semi axial pump design (specific speed, Ns: 3869) tested with fluid viscosity ranging from 1 cp to 1020 cp and in-house testing of a split vane impeller pump (Ns: 3027) and a helicoaxial pump (Ns: 5281) using 1 cp and 5 cp viscosity fluid. The modified affinity laws accurately models the performance dependence upon viscosity. As with the standard affinity laws, a pump's functional relationship varies with each pump design. Yet the modified affinity laws produce a single common curve for all operating conditions and viscosities for a specific pump.


2021 ◽  
Author(s):  
Rajeev Ranjan Sinha ◽  
Supriya Gupta ◽  
Praprut Songchitruksa ◽  
Saniya Karnik ◽  
Amey Ambade

Abstract Electrical Submersible Pump (ESP) systems efficiently pump high volumes of production fluids from the wellbore to the surface. They are extensively used in the oil and gas industry due to their adaptability, low maintenance, safety and relatively low environmental impact. They require specific operating conditions with respect to the power, fluid level and fluid content. Oilfield operation workflows often require extensive surveillance and monitoring by subject-matter experts (SMEs). Detecting issues like formation of unwanted gas and emulsions in ESPs requires constant analysis of downhole data by SMEs. The lack of adequate and accurate monitoring of the downhole pumps can lead to low efficiency, high lifting costs, and frequent repair and replacements. There are 3 workflows described in the paper which demonstrate that the maintenance costs of the ESPs can be significantly reduced, and production optimized with the augmentation of machine learning approaches typically unused in ESP surveillance and failure analysis.


Author(s):  
Diana Marcela Martinez Ricardo ◽  
German Efrain Castañeda Jiménez ◽  
Janito Vaqueiro Ferreira ◽  
Pablo Siqueira Meirelles

Various artificial lifting systems are used in the oil and gas industry. An example is the Electrical Submersible Pump (ESP). When the gas flow is high, ESPs usually fail prematurely because of a lack of information about the two-phase flow during pumping operations. Here, we develop models to estimate the gas flow in a two-phase mixture being pumped through an ESP. Using these models and experimental system response data, the pump operating point can be controlled. The models are based on nonparametric identification using a support vector machine learning algorithm. The learning machine’s hidden parameters are determined with a genetic algorithm. The results obtained with each model are validated and compared in terms of estimation error. The models are able to successfully identify the gas flow in the liquid-gas mixture transported by an ESP.


Author(s):  
Thuy Chu ◽  
Tan C. Nguyen ◽  
Jihoon Wang ◽  
Duc Vuong

AbstractElectrical Submersible Pump (ESP) is one of the major Artificial Lift methods that is reliable and effective for pumping high volume of fluids from wellbores. However, ESP is not recommended for applications with high gas liquid ratio. The presence of free gas inside the pump causes pump performance degradation which may lead to problems or even failure during operations. Thus, it is important to investigate effect of free gas on ESP performance under downhole conditions. At present, existing models or correlations are based on/verified with experimental data. This study is one of the first attempts to develop correlations for predicting two-phase gas–liquid pump performance under downhole conditions by using field data and laboratory data. Field data from three oil producing wells provided by Strata Production Company and Perdure Petroleum LLC. as well as experimental data obtained from experimental facility at Production and Drilling Research Project—New Mexico Tech were used in this study. Actual two-phase pump differential pressure per stage is obtained from experiments or estimated from field data and was normalized using pump performance curve. The values are compared to pump performance curve to study the relationships between pump performance and free gas percentage at pump intake. Correlations to predict ESP performance in two-phase flow under downhole and experimental conditions was derived from the results using regression technique. The correlation developed from field data presented in this study can be used to predict two-phase ESP performance under downhole conditions and under high gas fraction. The results from the experimental data confirm the reliability of the developed correlation using field data to predict two-phase ESP performance under downhole conditions. The developed correlation using the laboratory data predicts quite well the two-phase pump performance at the gas fraction of less than 15% while it is no longer reliable when free gas fraction is more than 15%. The findings from this study will help operating companies as well as ESP manufacturers to operate ESPs within the recommended range under downhole conditions. However, it is recommended to use the proposed correlation on reservoirs with conditions similar to those of the three presented wells.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Lissett Barrios ◽  
Mauricio Gargaglione Prado

Dynamic multiphase flow behavior inside a mixed flow electrical submersible pump (ESP) has been studied experimentally and theoretically for the first time. The overall objectives of this study are to determine the flow patterns and bubble behavior inside the ESP and to predict the operational conditions that cause surging. The theoretical study includes a mechanistic model for the prediction of the flow behavior inside the pump. The model comprises a one-dimensional force balance to predict occurrence of the stagnant bubbles at the channel intake. This model depends on two important variables, namely the stagnant bubble size and the bubble drag coefficient. The bubble size has been measured and a physically based correlation is presented. A new correlation for the drag coefficient is proposed as a function of rotational speed and Reynolds number. The model enables the prediction of the operational envelope of the ESP, namely the transition to surging.


Author(s):  
Logan T. Williams

Abstract Currently, most performance curves of gear pumps present volumetric efficiency as a function of one or more operating conditions. However, the nature of gear pumps is that volumetric efficiency is dependent on pump speed, pump pressure rise, and fluid viscosity. This dependency on multiple parameters impedes direct comparisons between pumps tested at disparate operating conditions or on different testbeds. A new method has been developed that formulates the volumetric efficiency as a function of a single parameter that captures pump speed, pressure, and fluid viscosity. The characteristics of the pump is then captured by curve fitting two constants to empirical data. This method allows extrapolation of pump performance beyond empirical data and direct comparison of the volumetric efficiency curves of two pumps tested under disparate conditions within a single plot. This work describes the analytical derivation of the methodology and the empirical data used for validations. Additionally, several possible applications of this method are presented.


2020 ◽  
Author(s):  
Zeynel Abbidin Firatoglu ◽  
Mustafa Nuri Alihanoglu

Abstract Submersible pumps, which are the main means of bringing the ground liquid to the surface, are widely used in agricultural irrigation, petroleum industry, geothermal fields, and similar applications. In most applications, submersible pumps are the main energy inputs of the operating process. Therefore, a small improvement in submersible pump efficiency will significantly reduce the operating cost of the system. The motivation and focus of this study are to experimentally and numerically investigate the effect of the geometric parameters of the submersible pump on the efficiency of the pump. The submersible pump has a design in the form of the serial connection of the stages including the impeller and the diffuser and enters the multi-stage pump category. All the impeller connected to a single shaft rotates at the same angular velocity. Despite the rotation of the impeller at a constant angular speed along with the pump, the flow structure at each stage shows large variations compared to other stages. These differences lead to the formation of a complex flow structure and thus to great difficulties in the experimental identification of the flow field along with the pump. Another difficulty in the experimental definition is that the measured values can show dramatic changes depending on many parameters such as fluid viscosity-temperature, impeller inlet-outlet angle, diffuser inlet-outlet angle, number of blades, the distance between stages, surface roughness. The current general trend is to solve the above-mentioned problems with numerical simulations verified by experimental data. This trend is a result of significant developments in computer capacities parallel to the development of numerical solution methods in recent years. This trend, or the method, has been followed throughout this study. Firstly, within the scope of this study, the performance in different stages of a selected industrial submersible pump was measured by the experimental. Following the measurements, the effects of two basic geometric parameters, such as impeller outlet width and impeller outlet angle on the pump performance were examined with CFD simulations verified by the experimental measurements. This small deviation indicates that the CFD simulation results are in perfect agreement with the experimental measurements. In the simulations performed, it is observed that the time-dependent variables have their size changed but the flow structure does not change. Another striking finding from the CFD simulations carried out is; it has been observed that while geometric arrangements have a partial effect on the flow structure along with the pump, they cause a difference in the critical values on the basic variables that define pump performance, such as pressure.


2020 ◽  
Vol 4 (4) ◽  
pp. 1-7
Author(s):  
Gomaa S

Artificial Lift is a very essential tool to increase the oil production rate or lift the oil column in the wellbore up to the surface. Artificial lift is the key in case of bottom hole pressure is not sufficient to produce oil from the reservoir to the surface. So, a complete study is carried to select the suitable type of artificial lift according to the reservoir and wellbore conditions like water production, sand production, solution gas-oil ratio, and surface area available at the surface. Besides, the maintenance cost and volume of produced oil have an essential part in the selection of the type of artificial lift tool. Artificial lift tools have several types such as Sucker Rod Pump, Gas Lift, Hydraulic Pump, Progressive Cavity Pump, Jet Pump, and Electrical Submersible Pump. All these types require specific conditions for subsurface and surface parameters to apply in oil wells. This paper will study the Electrical Submersible Pump “ESP” which is considered one of the most familiar types of artificial lifts in the whole world. Electrical Submersible Pump “ESP” is the most widely used for huge oil volumes. In contrast, ESP has high maintenance and workover cost. Finally, this paper will discuss a case study for the Electrical Submersible pump “ESP” design in an oil well. This case study includes the entire well and reservoir properties involving fluid properties to be applied using Prosper software. The results of the design model will impact oil productivity and future performance of oil well.


Sign in / Sign up

Export Citation Format

Share Document