Experimental Evaluation of Novel Swirl Flow Air-Water Separation Apparatus for Desalination/Water Remediation Applications

2021 ◽  
Author(s):  
Ashok Thyagarajan ◽  
Debjyoti Banerjee ◽  
Vijay Dhir

Abstract A novel apparatus that is capable of dynamic flash evaporation and phase separation using centrifugal flow (i.e., using a Hydro-Cyclone Apparatus/HCA) is evaluated in this study. The objective of this study is to evaluate the performance of a novel phase separator apparatus that forms a stable air core at the center from a premixed air-water mixture. The air core is retrieved using a retrieval tube placed at the center of the test section. Experiments were performed by varying the inlet volume flow rates of air and water to determine the maximum separation efficiency and plot its variation as a function of inlet air and water flow rates. The data obtained from this study is used as a preliminary indicator of the anticipated range of separation efficiencies for the system during experiments involving phase change for the production of potable water from saline water for water remediation applications.

Author(s):  
Ashok Thyagarajan ◽  
Debjyoti Banerjee ◽  
Vijay Dhir

Abstract A novel apparatus that is capable of dynamic flash evaporation and phase separation using centrifugal flow (i.e., using a Hydro-Cyclone Apparatus/HCA) is explored in this study. The objective of this study is to demonstrate the segregation of phases using the novel apparatus that forms a stable air core at the center from a premixed air-water mixture. The stable air core is then retrieved using an air retrieval tube that is strategically placed in the test section for maximum retrieval of air. For the purpose of this study, a prototype of the apparatus was fabricated using rapid prototyping (3D Printing). Experiments were performed on the flow separator apparatus (HCA) by varying the ratio of the air and water flow rates. A high-speed digital image acquisition apparatus was used in this study for flow visualization in the HCA. Flow maps were generated based on the measurements for flow rates and pressure drops obtained from the experiments conducted in this study. This enabled the measurement of several parameters, which include: the dimensions and morphology of the stable air core, entrainment of the water from the air retrieval tube, etc. The data obtained from this study will be used in the design of experiments for the novel apparatus to demonstrate the feasibility of a compact dynamic flash evaporator and separator system that can be used for various water conservation applications, which include: desalination (e.g., seawater, brackish water, as well as total dissolved solids/ TDS from produced water in oil and gas industries), water remediation (e.g., suspended solids) and purification (e.g., urine purification apparatus/ UPA).


Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 486-493
Author(s):  
Ting Liang ◽  
Biao Wang ◽  
Zhenzhong Fan ◽  
Qingwang Liu

Abstract A facile method for fabricating superhydrophobic and superoleophilic powder with 5A zeolite and stearic acid (SA) is reported in this study. The effect of different contents of SA on contact angle (CA) was investigated. The maximum water CA was 156.2°, corresponding to the optimum SA content of 1.5 wt%. The effects of SA and the mechanism of modified 5A zeolite powder by SA were analyzed by sedimentation analysis experiment, FTIR analysis, particle size analysis, and SEM characterization. The SA-modified 5A zeolite was used as an oil sorbent to separate oil–water mixture with potential use in floating oil. The separation efficiency was above 98%.


Author(s):  
Ang Li ◽  
Jianfeng Bai ◽  
Yun Shen ◽  
Hang Jin ◽  
Wei Wang ◽  
...  

The three-phase separator has a wide range of applications in oil production industry. For the purpose of studying the effect of heating temperature, demulsifiers and water content on the separation of oil-water mixture in the three-phase separator, eight kinds of oil samples were taken from different oil transfer stations in Changqing Oilfield and the mixtures were prepared by stirring method. To simulate the two-stage dehydration process, the first stage dehydration experiments without any heating were performed on mixtures at the dose of 100ppm demulsifer at 20°C, and the water cut of these mixtures is the same as that of the gathering pipeline in each oil transfer station. The water cut of the upper crude oil was measured after 40 minutes, and the values of them ranged from 0.5 vol% to 65.2 vol%. No visual stratification was observed for the sample most difficult to separate, so it was selected to conduct the second stage dewatering process. Three bottles of the same mixture were prepared and heated to 30°C, 40°C and 50°C, respectively. The results showed that all of them stratified in 10 minutes, and the water-cut values of the upper oil layer were 1.4 vol%, 0.5 vol% and 0.3 vol%, respectively, compared to 65.2 vol% at 20°C. When the concentration of demulsifier was changed to 200ppm and 300ppm, the results exhibited almost no differences. So it is deduced that the further improvement of heating temperature and demulsifier dose have limited enhancement on oil-water separation. At Last, 35 vol%, 50 vol%, 70 vol% and 85 vol% water cut mixtures of the special oil sample were made to experiment as previously. In consequence, the 35 vol% water-cut emulsions presented a relatively slow rate of oil-water stratification at low heating temperature, and the oil content of the lower separated water was improved by the addition of demulsifier dosage above 100ppm when the water cut was 90 vol%. It is indicated that high heating temperature is necessarry for low water-cut mixtures oil-water separation and can be appropriately reduced to save energy consumption as the water cut continues to rise. The demulsifier dosage is also neccessary be controlled in high water cut period. These experimental data provide the basis for the further optimization operation of the three-phase separator.


RSC Advances ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 5035-5043
Author(s):  
Jinxiu Ma ◽  
Wen Meng ◽  
Lahong Zhang ◽  
Feng Li ◽  
Taohai Li

The nickel-dimethylglyoxime microtubes were synthesized by a facile coprecipitation method. The as-prepared superhydrophobic and superoleophilic films showed excellent oil–water separation efficiency and effective photocatalytic degradation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Qilei Tong ◽  
Zhenzhong Fan ◽  
Biao Wang ◽  
Qingwang Liu ◽  
Yunhe Bo ◽  
...  

Oily sewage and floating oil in the ocean post a huge threat to the ecological environment, therefore, developing an efficient separation for oil/water mixtures is an urgent need. Currently, superhydrophobic materials exhibit excellent oil/water separation ability. In this study, a superhydrophobic copper mesh prepared by the chemical etching method and the in-situ growth method and the performance evaluation are introduced. The oxide layer on the surface of the copper mesh is first removed by pickling, and then immersed in FeCl3 solution for chemical etching to make the surface rough, stearic acid (SA) is used for in-situ growth to reduce the surface energy, a superhydrophobic oil-water separation copper mesh is obtained. The water contact angle (WCA) of the copper mesh is more than 160°. The copper mesh is chemically stable and can effectively adsorb floating oil and separate the oil-water mixture. After several oil-water separation experiments, the oil-water separation efficiency can still be above 98%. The effects of the concentration of FeCl3 and SA on the contact angle and oil-water separation efficiency are investigated, the results show that when the concentration of FeCl3 is 2% and SA is 1.5%, the WCA and oil-water separation efficiency are the largest. The research used a simple and environmentally friendly method to prepare the oil-water separation copper mesh, which has important application significance for water quality restoration.


2021 ◽  
Vol 25 (3) ◽  
pp. 53-61
Author(s):  
M. Gürsoy ◽  
Ö. Saygı ◽  
R. Hoyladı ◽  
M. Yorulmaz ◽  
M. Karaman

Oil-spill is one of the major global issues facing society in this century. The aim of this study was to develop a steel-based membrane for selective separation of oil from oil/water mixture. For this purpose, a single-step, rapid and environmentally friendly closed-batch initiated chemical vapor deposition (iCVD) method was employed to deposit hydrophobic thin film on a stainless-steel mesh. Perfluorodecyl acrylate (PFDA) and tert-butyl peroxide (TBPO) were used as monomer and initiator, respectively. Owing to the inherent vapor-based nature of iCVD method provided excellent conformal coverage on the mesh with high durability. iCVD coated mesh showed 96% oil/water separation efficiency. Highly reproducible results were obtained when the oil/water separation experiments were repeated.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1176
Author(s):  
Siti Zarina Zakuwan ◽  
Ishak Ahmad ◽  
Nurfaizah Abu Tahrim ◽  
Faizal Mohamed

In this study, we fabricated a modified biomaterial based on chitosan and gelatin, which is an intrinsic hydrophilic membrane for oil–water separation to clean water contamination by oil. Modification of the membrane with a non-toxic natural crosslinker, genipin, significantly enhanced the stability of the biopolymer membrane in a water-based medium towards an eco-friendly environment. The effects of various compositions of genipin-crosslinked chitosan–gelatin membrane on the rheological properties, thermal stability, and morphological structure of the membrane were investigated using a dynamic rotational rheometer, thermogravimetry analysis, and chemical composition by attenuated total reflectance spectroscopy (ATR). Modified chitosan–gelatin membrane showed completely miscible blends, as determined by field-emission scanning electron microscopy, differential scanning calorimetry, and ATR. Morphological results showed membrane with establish microstructure to further experiment as filtration product. The membranes were successfully tested for their oil–water separation efficiencies. The membrane proved to be selective and effective in separating water from an oil–water mixture. The optimum results achieved a stable microporous structure of the membrane (microfiltration) and a separation efficiency of above 98%. The membrane showed a high permeation flux, generated as high as 698 and 420 L m−2 h−1 for cooking and crude oils, respectively. Owing to its outstanding recyclability and anti-fouling performance, the membrane can be washed away easily, ensuring the reusability of the prepared membrane.


Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 66
Author(s):  
Zhongjie Zhu ◽  
Lei Jiang ◽  
Jia Liu ◽  
Sirui He ◽  
Wei Shao

A superhydrophobic fluorinated silica functionalized chitosan (F-CS) aerogel is constructed and fabricated by a simple and sustainable method in this study in order to achieve highly efficient gravity-driven oil/water separation performance. The fluorinated silica functionalization invests the pristine hydrophilic chitosan (CS) aerogel with promising superhydrophobicity with a water contact angle of 151.9°. This novel F-CS aerogel possesses three-dimensional structure with high porosity as well as good chemical stability and mechanical compression property. Moreover, it also shows striking self-cleaning performance and great oil adsorption capacity. Most importantly, the as-prepared aerogels exhibits fast and efficient separation of oil/water mixture by the gravity driven process with high separation efficiency. These great performances render the prepared F-CS aerogel a good candidate for oil/water separation in practical industrial application.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1083
Author(s):  
Bigui Wei ◽  
Xuying Luo ◽  
Xiaosan Song ◽  
Hanyue Guo ◽  
Liang Dai ◽  
...  

For continuous and efficient oil/water separation and adsorption of dyes, coconut shell powder was grafted onto the surface of quartz sand by dip-coating method to make coconut shell powder-covered quartz sand filter media (CSQS) with superhydrophilic and underwater superoleophobic properties and superoleophilic and underoil highly hydrophobic properties. The contact angles of the underwater oil and underoil water with CSQS were more than 151.2° and 134.2°, respectively. A continuous oil/water separation device was designed. The separation device filled with CSQS can separate oil/water mixture (whether heavy or light oil) into water and oil at the same time with a separation efficiency of above 99.92%. The filter layer can be recovered through reverse extrusion even after lyophobic liquid penetrated the filter layer; hence, the separation efficiency of the filter layer was still above 99.99% for diesel and water mixture. Simultaneously, CSQS can effectively adsorb methylene blue with the highest removal rate as 98.94%. CSQS can maintain stable wettability under harsh environment conditions. This paper provides a new idea on continuous and efficient oil/water separation and simultaneous dye adsorption.


RSC Advances ◽  
2017 ◽  
Vol 7 (33) ◽  
pp. 20147-20151 ◽  
Author(s):  
Zhenzhen Wu ◽  
Yingzhan Li ◽  
Linping Zhang ◽  
Yi Zhong ◽  
Hong Xu ◽  
...  

Thiol–ene click reaction was employed to synthesize a flexible hydrophilic cellulose sponge. The sponge can be circular used in oil/water mixture (emulsion) separation and hold separation efficiency high separation efficiency.


Sign in / Sign up

Export Citation Format

Share Document