Influence of Fuel Chemical Composition on Particulate Matter Emissions of a Turbine Engine

Author(s):  
Edwin Corporan ◽  
Orvin Monroig ◽  
Matthew Wagner ◽  
Matthew J. Dewitt

The effects of fuel chemical composition on particulate matter (PM) emissions of a T63 engine were investigated. Fuels with different aromatic, cycloparaffin (naphthene), iso-paraffin and normal paraffin levels were evaluated in the turboshaft engine and compared to the performance of a typical JP-8 fuel. The fuels studied include: a semi-synthetic jet fuel, two high naphthenic experimental fuels, three Exxon solvents (Isopar M, Isopar H and Norpar-13) and methylcyclohexane. The effect of blending solvents in JP-8 on PM emissions was also assessed. Commercially available particulate instruments were used to measure particle number density, particulate mass concentration and particle size distribution. Results showed a general trend of higher particulate concentrations and larger diameter soot particles with decreasing fuel hydrogen-to-carbon (H/C) ratio or increasing aromatic content. However, for several fuels with approximately the same H/C ratio, significant differences in PND and calculated mass were observed. Furthermore, blends of JP-8 with solvents of similar H/C ratio but varying chemical composition produced significantly different particulate emissions. These findings demonstrate that particulate emissions from hydrocarbon-fueled combustion processes are not solely a function of the H/C ratio or aromatic concentration of the fuel, but that other properties or constituents also impact soot emissions. Chemical and physical properties of the fuels and their potential effect on particulate emissions are discussed. These findings provide insight into fuel properties that impact PM emissions, which may aid in the development of fuel additives to reduce particulate emissions from turbine engine combustors.

2019 ◽  
Vol 218 ◽  
pp. 116974
Author(s):  
Zhenhong Yu ◽  
Michael T. Timko ◽  
Scott C. Herndon ◽  
Richard, C. Miake-Lye ◽  
Andreas J. Beyersdorf ◽  
...  

Author(s):  
Tak W. Chan ◽  
Wajid A. Chishty ◽  
Pervez Canteenwalla ◽  
David Buote ◽  
Craig R. Davison

Alternative fuels for aviation are now a reality. These fuels not only reduce reliance on conventional petroleum-based fuels as the primary propulsion source, but also offer promise for environmental sustainability. While these alternative fuels meet the aviation fuels standards and their overall properties resemble those of the conventional fuel, they are expected to demonstrate different exhaust emissions characteristics because of the inherent variations in their chemical composition resulting from the variations involved in the processing of these fuels. This paper presents the results of back-to-back comparison of emissions characterization tests that were performed using three alternative aviation fuels in a GE CF-700-2D-2 engine core. The fuels used were an unblended synthetic kerosene fuel with aromatics (SKA), an unblended Fischer–Tropsch (FT) synthetic paraffinic kerosene (SPK) and a semisynthetic 50–50 blend of Jet A-1 and hydroprocessed SPK. Results indicate that while there is little dissimilarity in the gaseous emissions profiles from these alternative fuels, there is however a significant difference in the particulate matter emissions from these fuels. These differences are primarily attributed to the variations in the aromatic and hydrogen contents in the fuels with some contributions from the hydrogen-to-carbon ratio of the fuels.


2018 ◽  
Author(s):  
Z. Gerald Liu ◽  
Devin R. Berg ◽  
James J. Schauer‡

Studies have shown that there are a significant number of chemical species present in engine exhaust particulate matter emissions. Additionally, the majority of current world-wide regulatory methods for measuring engine particulate emissions are gravimetrically based. As modern engines produce increasingly lower particulate mass emissions, these methods become less and less stable and have high levels of measurement uncertainty. In this study, a characterization of mass emissions from engines with a range of particulate emission levels was made in order to gain a better understanding of the variability and uncertainty associated with common mass measurement methods, as well as how well these methods compare with each other. Two gravimetric mass measurement methods and a reconstructed mass method were analyzed as part of the present study. The results have shown that each of the mass measurement methods analyzed compare well at higher emission levels, but show significant disparity at the ultra-low emission levels commonly seen from modern diesel engines. Additionally, at ultra-low emission the uncertainty in the measurement becomes large, thus reducing confidence in the accuracy of the measurement. Based upon these findings, it would be difficult to justify a comparison between any two gravimetric measurement methods and it may be more appropriate to perform a reconstruction of the particulate mass due to a lower susceptibility to measurement error.


Author(s):  
Tak W. Chan ◽  
Wajid A. Chishty ◽  
Pervez Canteenwalla ◽  
David Buote ◽  
Craig R. Davison

Alternative fuels for aviation are now a reality. These fuels not only reduce reliance on conventional petroleum-based fuels as the primary propulsion source, but also offer promise for environmental sustainability. While these alternative fuels meet the aviation fuels standards and their overall properties resemble those of the conventional fuel, they are expected to demonstrate different exhaust emissions characteristics because of the inherent variations in their chemical composition resulting from the variations involved in the processing of these fuels. This paper presents the results of back-to-back comparison of emissions characterization tests that were performed using three alternative aviation fuels in a GE CF-700-2D-2 engine core. The fuels used were an unblended synthetic kerosene fuel with aromatics (SKA), an unblended Fischer Tropsch synthetic paraffinic kerosene (SPK) and a semi-synthetic 50-50 blend of Jet A-1 and hydroprocessed SPK. Results indicate that while there is little dissimilarity in the gaseous emissions profiles from these alternative fuels, there is however a significant difference in the particulate matter emissions from these fuels. These differences are primarily attributed to the variations in the aromatic and hydrogen contents in the fuels with some contributions from the hydrogen-to-carbon ratio of the fuels.


2020 ◽  
Vol 12 (1) ◽  
pp. 422 ◽  
Author(s):  
Raquel Pérez-Orozco ◽  
David Patiño ◽  
Jacobo Porteiro ◽  
José Luís Míguez

This paper introduces an experimental plant specifically designed to challenge the main operating issues related to modern biomass combustion systems (mainly NOx, particulate matter, and deposition phenomena). The prototype is an 11–18 kW overfed fixed-bed burner with a modular configuration, and the design considers the implementation of certain strategies for improving combustion: (1) a complete refrigeration system that also includes the fuel bed; and (2) an air injection control through flue gas recirculation. First, the stability and repeatability of the facility were successfully tested, establishing the duration of transient periods in the phase of experiment design. The results revealed similar effects in temperature and particulate emissions when comparing the use of the cooling bed and recirculation techniques. Reductions of 15% and up to 70% were achieved for the exhaust temperature and particulate matter concentration, respectively. Otherwise, the refrigeration considerably reduced the bed temperature, especially in its core, which enhanced the condensation of volatile salts and therefore the fouling phenomena. Although the viability of using both techniques as temperature control methods is demonstrated, further studies are needed to clarify the specific effects of each technology and to clarify the possible significance of a hybrid solution that combines both strategies.


2012 ◽  
Vol 46 (19) ◽  
pp. 10805-10811 ◽  
Author(s):  
Prem Lobo ◽  
Lucas Rye ◽  
Paul I. Williams ◽  
Simon Christie ◽  
Ilona Uryga-Bugajska ◽  
...  

2018 ◽  
Author(s):  
Miriam Elser ◽  
Benjamin T. Brem ◽  
Lukas Durdina ◽  
David Schönenberger ◽  
Frithjof Siegerist ◽  
...  

Abstract. Aircraft engines are a unique source of carbonaceous aerosols in the upper troposphere. There, these particles can more efficiently interact with solar radiation than at ground. Due to the lack of measurement data, the radiative forcing from aircraft particulate emissions remains uncertain. To better estimate the global radiative effects of aircraft exhaust aerosol, its optical properties need to be comprehensively characterized. In this work we present the link between the chemical composition and the optical properties of the particulate matter (PM) measured at the engine exit plane of a CFM56-7B turbofan. The measurements covered a wide range of power settings (thrust), ranging from ground idle to take-off, using four different fuel blends of conventional Jet A-1 and Hydro-processed Ester and Fatty Acids (HEFA) biofuel. At the two measurement wavelengths (532 and 870 nm) and for all tested fuels, the absorption and scattering coefficients increased with thrust, as did the PM mass. The separation of elemental carbon (EC) and organic carbon (OC) revealed a significant mass fraction of OC (up to 90 %) at low thrust levels, while EC mass dominated at medium and high thrust. The use of HEFA blends induced a significant decrease in the PM mass and the optical coefficients at all thrust levels. The HEFA effect was highest at low thrust levels, where the EC mass was reduced by up to 50–60 %. The variability in the chemical composition of the particles was the main reason for the strong thrust dependency of the single scattering albedo (SSA), which followed the same trend as the OC fraction. Mass absorption coefficients (MAC) were determined from the correlations between aerosol light absorption and EC mass concentration. The obtained MAC values (MAC532 = 7.5 ± 0.3 m2 g−1 and MAC870 = 5.2 ± 0.9 m2 g−1) are in excellent agreement with previous literature values of absorption cross section for freshly generated soot. The Simple Forcing Efficiency (SFE) was used to evaluate the direct radiative effect of aircraft particulate emissions for various ground surfaces. The results indicate that aircraft PM emissions over highly reflective surfaces like snow or ice have a substantial warming effect. The use of the HEFA fuel blends decreased PM emissions, but no changes where observed in terms of EC/OC composition, optical properties and forcing per mass emitted.


Author(s):  
Stephen Rutter

The combustor system of an AVCO Lycoming T53-L-13B turboshaft engine was tested to identify fuel properties detrimental to engine performance or hot section durability, and to measure their effect. Test fuels were characteristic of current and near-term alternate fuels for military aircraft. Relations were developed for altitude ignition, particulate emissions, combustion efficiency, and combustor liner life. Fuel hydrogen content was found to be an important consideration for particulates and combustor liner life, while fuel viscosity, density and mass transfer number were important to idle efficiency and altitude ignition.


Sign in / Sign up

Export Citation Format

Share Document