Numerical Investigation of the Effect of Different Back Sweep Angle and Exducer Width on the Impeller Outlet Flow Pattern of a Centrifugal Compressor With Vaneless Diffuser

Author(s):  
A. Hildebrandt ◽  
M. Genrup

This paper presents a numerical investigation of the effect of different back sweep angles and exducer widths on the steady-state impeller outlet flow pattern of a centrifugal compressor with a vaneless diffuser. The investigations have been performed with commercial CFD and in-house programmed 1-D codes. CFD calculations aim to investigate how flow pattern from the impeller is quantitatively influenced by compressor geometry parameters; thereby, the location of wake and its magnitude (flow angle and relative velocity magnitude) are analyzed. Results show that the increased back sweep impeller provides a more uniform flow pattern in terms of velocity and flow deviation angle distribution, and offers better potential for the diffusion process inside a vaneless (or vaned) diffuser. Secondary flux fraction and flow deviation angle from CFD simulation are implemented into the 1-D two-zone program to improve 1-D prediction results.

2006 ◽  
Vol 129 (2) ◽  
pp. 421-433 ◽  
Author(s):  
A. Hildebrandt ◽  
M. Genrup

This paper presents a numerical investigation of the effect of different back sweep angles and exducer widths on the steady-state impeller outlet flow pattern of a centrifugal compressor with a vaneless diffuser. The investigations have been performed with commercial computational fluid dynamics (CFD) and in-house programmed one-dimensional (1D) codes. CFD calculations aim to investigate how flow pattern from the impeller is quantitatively influenced by compressor geometry parameters; thereby, the location of wake and its magnitude (flow angle and relative velocity magnitude) are analyzed. Results show that the increased back sweep impeller provides a more uniform flow pattern in terms of velocity and flow deviation angle distribution, and offers better potential for the diffusion process inside a vaneless (or vaned) diffuser. Secondary flux fraction and flow deviation angle from CFD simulation are implemented into the 1D two-zone program to improve 1D prediction results.


Author(s):  
R. Rajendran

The overall efficiency of a compressor is dependent on the design of both the impeller and the diffuser. The vaned diffuser reduces the operating range compared to the vaneless diffuser. However, by proper setting of the diffuser with reference to the impeller, it is possible to achieve a good stage performance. This paper describes the experimental investigation of the detailed flow behavior inside a centrifugal compressor stage for three different setting angles of the vaned diffuser with reference to the fixed impeller blade outlet angle. It is seen that diffuser setting angles lower than the impeller outlet flow angle gives wide operating range.


Author(s):  
T M A Maksoud ◽  
M W Johnson

Distributions of normal and shear (Reynolds) stresses inside the vaneless diffuser of a low-speed centrifugal compressor are presented. The measurements were made using a triple hot-wire system and a phase lock loop sampling technique. Results were obtained on cross-sectional planes at eight radial stations between the impeller outlet and the diffuser exit at three different flowrates. The turbulence was highly anisotropic and became more so as the flowrate was increased. The tangential component of turbulent intensity was found to be significantly smaller than either the radial or axial component. The blade wake observed at the diffuser inlet decays very rapidly due to the strong tangential Reynolds stresses generated by the opposed secondary flows on either side of the wake. The passage wake decays very much more slowly and is still identifiable at the diffuser discharge.


2000 ◽  
Author(s):  
K. B. Abidogun ◽  
S. A. Ahmed

Abstract Detailed experimental investigation of flow features in a parallel-walled radial vaneless diffuser of a centrifugal blower was carried out. Maximum flow rate through the blower, at a constant impeller speed of 1500 rpm, was maintained throughout the experiment to ensure that no self-exited flow oscillation occurs in the diffuser. The symmetrical flowfield in the diffuser was measured along a radial path using an X-wire probe. The radial and tangential velocity distributions and their statistics, as well as flow angle distribution, are reported. The results presented in this paper agree well with earlier work on this subject. For instance, the flow angle at half the diffuser width, which is the position at which critical flow angle (measured from the radial direction) have been generally reported to be about 78°, did not exceed 65° from the diffuser inlet to its outlet along the measurement path. The result also showed that the flow exiting the impeller is skewed as revealed by the triple velocity product correlations. This data is a useful tool for vaneless diffuser calculation model developers as there are very limited data that paralleled the current one as expounded in the text of this paper.


Author(s):  
Hiroshi Miida ◽  
Kenta Tajima ◽  
Nobumichi Fujisawa ◽  
Yutaka Ohta

Abstract The unsteady diffuser stall behavior in a centrifugal compressor with a vaneless diffuser was investigated by experimental and computational analyses. The diffuser stall generated as the mass flow rate decreased. The diffuser stall cell rotated at 25–30% of the impeller rotational speed, with diffuser stall fluctuations observed at 180° from the cutoff. The diffuser stall fluctuation magnitude gradually increased near the cutoff. Based on diffuser inlet velocity measurements, the diffuser stall fluctuations generated near both the shroud and hub sides, and the diffuser stall appeared at 180° and 240° from the cutoff. According to the CFD analysis, the mass flow fluctuations at the diffuser exit showed a low mass flow region, rotating at approximately 25% of the impeller rotational speed. They began at 180° from the cutoff and developed as this region approached the cutoff. Therefore, the diffuser stall could be simulated by CFD analysis. First, the diffuser stall cell originated at 180° from the cutoff by interaction with boundary separation and impeller discharge vortex. Then, the diffuser stall cell further developed by boundary separation accumulation and the induced low velocity area, located at the stall cell center. The low velocity region formed a blockage across the diffuser passage span. The diffuser stall cell expanded in the impeller rotational direction due to boundary separation caused by a positive flow angle. Finally, the diffuser stall cell vanished when it passed the cutoff, because mass flow recovery occurred.


1995 ◽  
Vol 117 (4) ◽  
pp. 602-608 ◽  
Author(s):  
A. Pinarbasi ◽  
M. W. Johnson

Detailed measurements have been taken of the three-dimensional velocity field within the vaneless diffuser of a backswept low speed centrifugal compressor using hot-wire anemometry. A 16 percent below and an 11 percent above design flow rate were used in the present study. Results at both flow rates show how the blade wake mixes out more rapidly than the passage wake. Strong secondary flows inherited from the impeller at the higher flow rate delay the mixing out of the circumferential velocity variations, but at both flow rates these circumferential variations are negligible at the last measurement station. The measured tangential/radial flow angle is used to recommend optimum values for the vaneless space and vane angle for design of a vaned diffuser.


2021 ◽  
Author(s):  
Nobumichi Fujisawa ◽  
Yuki Agari ◽  
Yoshifumi Yamao ◽  
Yutaka Ohta

Abstract The rotating mechanism of diffuser stall in a centrifugal compressor with a vaneless diffuser is investigated via experimental and computational analyses. Diffuser stall is generated as the mass flow rate decreases, and it rotates at 25%–30% of the impeller rotational speed. First, a diffuser stall cell emerges at 180° from the cutoff by the hub-side boundary layer separation. Subsequently, the diffuser stall cell develops further owing to boundary layer separation accumulation and an induced low-velocity area. The low-velocity region forms a blockage across the diffuser passage span. The diffuser stall cell expands owing to the boundary layer separations that occurred on the shroud and hub wall by turns. Finally, the diffuser stall cell vanishes when it passes the cutoff because mass flow recovery occurred. Furthermore, the static pressure ahead of the rotating stall decreases because of the merging of the impeller discharge flow and the reverse flow from the casing. Accordingly, a reverse flow occurred owing to the evolution of the separation vortex at the diffuser exit. In addition, the flow angle decreases by the merging of the impeller discharge flow and reverse flow from the casing. Therefore, boundary layer separations start occurring on the shroud and hub wall ahead of the stall cell. The rotating mechanism of the diffuser stall is induced by the reverse flow development and a decrease in the flow angle ahead of the stall cell.


Author(s):  
О.А. Solovyeva ◽  
А.А. Drozdov ◽  
E.Yu. Popova ◽  
K.V. Soldatova

The centrifugal compressor design involves the use of approximate engineering techniques based on mathematical modeling. One of such techniques is the universal modeling method, which proves to be practically applicable. Having generalized a series of CFD calculations, we used a mathematical model in the latest version of the compressor model to calculate flow parameters in vaneless diffusers. The diffuser model was identified based on the results of experimental studies of average-flow model stages carried out at SPbPU. The model is also used to calculate Clark low-flow centrifugal compressor stages with narrow diffusers with a relative width in the range of 0.5--2.0 %. For these stages, the developed mathematical model showed insufficient efficiency, since the dimensions of the diffusers go beyond the limits of its applicability. To solve this problem, we calculated a series of vaneless diffusers with a relative width in the range of 0.6--1.2 % in the ANSYS CFX software package. Relying on the results of CFD calculations, we plotted the gas dynamic characteristics of the loss coefficients and changes in the flow angle depending on the flow angle at the inlet to the vaneless diffuser. To process the calculated data, the method of regression analysis was applied, with the help of which a system of algebraic equations was developed that connects geometric, gas-dynamic parameters and similarity criteria. The obtained equations are included in a new mathematical model of the universal modeling method for calculating the flow parameters of vaneless diffusers. Comparison of the calculated gas-dynamic characteristics according to the new model with experimental data showed the average error of modeling the calculated (maximum) efficiency equal to 1.08 %


Author(s):  
Abraham Engeda

Volute scroll, conic diffuser and sudden expansion discharge loss account for 4–6 points of efficiency decrement in a typical centrifugal compressor stage. The flow in a volute is highly comlex. It is strongly believed that understanding of the detailed flow structure in a volute will provide insights on minimizing the losses by isolating the mechanisms that contributes to entropy generation. The result will be more efficient centrifugal compressor product for customers at higher profitability levels for manufacturers. Results of an experimental and theoretical analysis of the flow inside in a single stage centrifugal compressor volute are presented. Experiments were performed at three speeds and eight mass flow rates per speed. Static pressure distributions were mapped on the vaneless diffuser and volute casings. This data gave a good understanding of the flow structure in the volute. A meanline analysis was performed using the experimental results in order to obtain the absolute velocity and flow angle leaving the impeller. The combination of the two data sets was used as boundary conditions for a theoretical analysis. Theoretical results showed the detail flow structures inside the vaneless diffuser and volute with good agreement to the experiment.


Author(s):  
T Sato ◽  
J M Oh ◽  
A Engeda

As user demands grew for improved performance and more reliable equipment and as compressor vendors sought improved analytical and design methodologies, the application of computational fluid dynamics (CFD) in the industrial world became a necessity. Fortunately, large increases in available, economic computing power together with development of improved computational methods now provide the industrial designer with much improved analytic capability. As CFD algorithms and software have continued to be developed and refined, it remains essential that validation studies be conducted in order to ensure that the results are both sufficiently accurate and can be obtained in a robust and predictable manner. Part I of this paper presented detailed flow measurements in a vaneless diffuser of a centrifugal compressor stage with a very high flow coefficient radial impeller, where measurements were carried out in the vaneless diffuser at seven radial positions downstream of the radial impeller designed for a very high flow coefficient of ϕ = 0.2. This paper, Part II, attempts to verify and validate the results numerically.


Sign in / Sign up

Export Citation Format

Share Document