Aerodynamic Characteristics of a Redesigned Turbine

Author(s):  
Vladimir Vassiliev ◽  
Norbert Mooslechner ◽  
Mikhail Kostege ◽  
Andrei Granovskiy

The aero-redesign of a 50 Hz Gas Turbine GT13D3A is presented. The modifications enabling performance improvements are described, and the aero-design process is briefly discussed as well. The aerodynamic characteristics of an upgraded turbine (GT13DM) are compared with the original design (GT13D3A) and with the measurements in the field. The measurements confirmed the expected performance improvement.

Author(s):  
Yuri I. Biba ◽  
Zheji Liu ◽  
D. Lee Hill

A complete effort to redesign the aerodynamic characteristics of a single-stage pipeline compressor is presented. The components addressed are the impeller, diffuser region, and the volute. The innovation of this effort stems from the simultaneous inclusion of both the noise and aerodynamic performance as primary design parameters. The final detailed flange-to-flange analysis of the new components clearly shows that the operating range is extended and the tonal noise driven by the impeller is reduced. This is accomplished without sacrificing the existing high efficiency of the baseline machine. The body of the design effort uses both Computational Fluid Dynamics (CFD) and vibro-acoustics technology. The predictions are anchored by using the flange-to-flange analysis of the original design and its experimental performance data. By calculating delta corrections and assuming that these deltas are approximately the same for the new design, the expected performance is extrapolated.


2021 ◽  
Author(s):  
Ilya Fedorov ◽  
Dikran Barhanko ◽  
Magnus Hallberg ◽  
Martin Lindbaeck

Abstract Additive manufacturing (AM) of gas turbine components has been suggested as a measure to improve performance and create other value additions in several research papers. This paper focuses on application of AM for gas turbine performance improvement considering industrial scale of this activity at Siemens Energy. Efficient cooling designs, made possible by AM, are considered not only from the standpoint of cooling characteristics, but also inherent challenges, arising in the complete chain of manufacturing processes: from powder removal to coating. Practical limitations of cooling scheme complexity are discussed and the benefits of in-wall cooling, enabled by AM, are described. It is shown that thin cooled trailing edges, enabled by the AM, provide considerable reduction of losses. It is demonstrated that production challenges can be successfully overcome, and the components can be manufactured with the required quantity and according to the original design intent. The sequence and progress of AM components long-term validation in the field engines are discussed and illustrated with actual operation experience. The development of the AM vane was executed in line with the roadmap of AM portfolio development in Siemens Energy and supports the strategy of commercial validation and full commercial release of AM components..


Author(s):  
Jie Gao ◽  
Chunde Tao ◽  
Dongchen Huo ◽  
Guojie Wang

Marine, industrial, turboprop and turboshaft gas turbine engines use nonaxisymmetric exhaust volutes for flow diffusion and pressure recovery. These processes result in a three-dimensional complex turbulent flow in the exhaust volute. The flows in the axial turbine and nonaxisymmetric exhaust volute are closely coupled and inherently unsteady, and they have a great influence on the turbine and exhaust aerodynamic characteristics. Therefore, it is very necessary to carry out research on coupled axial turbine and nonaxisymmetric exhaust volute aerodynamics, so as to provide reference for the high-efficiency turbine-volute designs. This paper summarizes and analyzes the recent advances in the field of coupled axial turbine and nonaxisymmetric exhaust volute aerodynamics for turbomachinery. This review covers the following topics that are important for turbine and volute coupled designs: (1) flow and loss characteristics of nonaxisymmetric exhaust volutes, (2) flow interactions between axial turbine and nonaxisymmetric exhaust volute, (3) improvement of turbine and volute performance within spatial limitations and (4) research methods of coupled turbine and exhaust volute aerodynamics. The emphasis is placed on the turbine-volute interactions and performance improvement. We also present our own insights regarding the current research trends and the prospects for future developments.


Energy ◽  
2021 ◽  
pp. 120665
Author(s):  
Koichi Yonezawa ◽  
Genki Nakai ◽  
Masahiro Takayasu ◽  
Kazuyasu Sugiyama ◽  
Katsuhiko Sugita ◽  
...  

Author(s):  
F. W. Huber ◽  
P. D. Johnson ◽  
O. P. Sharma ◽  
J. B. Staubach ◽  
S. W. Gaddis

This paper describes the results of a study to determine the performance improvements achievable by circumferentially indexing successive rows of turbine stator airfoils. An experimental / analytical investigation has been completed which indicates significant stage efficiency increases can be attained through application of this airfoil clocking concept. A series of tests was conducted at the National Aeronautics and Space Administration’s (NASA) Marshall Space Flight Center (MSFC) to experimentally investigate stator wake clocking effects on the performance of the Space Shuttle Main Engine Alternate Fuel Turbopump Turbine Test Article. Extensive time-accurate Computational Fluid Dynamics (CFD) simulations have been completed for the test configurations. The CFD results provide insight into the performance improvement mechanism. Part one of this paper describes details of the test facility, rig geometry, instrumentation, and aerodynamic operating parameters. Results of turbine testing at the aerodynamic design point are presented for six circumferential positions of the first stage stator, along with a description of the initial CFD analyses performed for the test article. It should be noted that first vane positions 1 and 6 produced identical first to second vane indexing. Results obtained from off-design testing of the “best” and “worst” stator clocking positions, and testing over a range of Reynolds numbers are also presented. Part two of this paper describes the numerical simulations performed in support of the experimental test program described in part one. Time-accurate Navier-Stokes flow analyses have been completed for the five different turbine stator positions tested. Details of the computational procedure and results are presented. Analysis results include predictions of instantaneous and time-average mid-span airfoil and turbine performance, as well as gas conditions throughout the flow field. An initial understanding of the turbine performance improvement mechanism is described.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Vieri Maestrini ◽  
Andrea Stefano Patrucco ◽  
Davide Luzzini ◽  
Federico Caniato ◽  
Paolo Maccarrone

PurposeGrounding on resource orchestration theory, this paper aims to study the relationship between the way buying companies use their supplier performance measurement systems and the performance improvements obtained from suppliers, with relationship trust identified as a mediator in the previous link.Design/methodology/approachThe authors design a conceptual model and test it through structural equation modelling on a final sample of 147 buyer-supplier responses, collected by means of a dyadic survey.FindingsResults suggest that the buyer company may achieve the most by balancing a diagnostic and interactive use of the measurement system, as they are both positively related to supplier performance improvement. Furthermore, relationship trust acts as a mediator in case of the interactive use, but not for the diagnostic. This type of use negatively affects relationship trust, due to its mechanistic use in the buyer-supplier relationship.Originality/valueThe authors’ results contribute to the current academic debate about supplier performance measurement system design and use by analyzing the impact of different supplier performance measurement system uses, and highlighting their relative impact on relationship trust and supplier performance improvement. From a methodological perspective, adopting a dyadic data collection process increases the robustness of the findings.


1983 ◽  
Author(s):  
George S. Hazen ◽  
Steve Killing

From the perspective of the design office, this paper examines the manner in which computers are streamlining and changing the design process for today's sailing yachts. Starting with preliminary design and progressing through the more detailed aspects of final design, the computer's varying roles in the design process are traced with examples drawn from currently implemented programs. In addition to its customary role as a bookkeeper, the computer's remarkable graphics capabilities are highlighted. The authors offer a glimpse of what programs and hardware tomorrow's yacht designer will use as frequently as his curves and battens. The paper covers such subjects as design follow-up, sailing analysis and feedback into the original design process. Since designers are not the only ones to benefit from the computer revolution, the authors have included sections on computer generated sailing aids for the yachtsman and possible CAD/CAM applications for the boatbuilder.


2019 ◽  
Vol 91 (8) ◽  
pp. 1077-1085 ◽  
Author(s):  
Filip Wasilczuk ◽  
Pawel Flaszynski ◽  
Piotr Kaczynski ◽  
Ryszard Szwaba ◽  
Piotr Doerffer ◽  
...  

Purpose The purpose of the study is to measure the mass flow in the flow through the labyrinth seal of the gas turbine and compare it to the results of numerical simulation. Moreover the capability of two turbulence models to reflect the phenomenon will be assessed. The studied case will later be used as a reference case for the new, original design of flow control method to limit the leakage flow through the labyrinth seal. Design/methodology/approach Experimental measurements were conducted, measuring the mass flow and the pressure in the model of the labyrinth seal. It was compared to the results of numerical simulation performed in ANSYS/Fluent commercial code for the same geometry. Findings The precise machining of parts was identified as crucial for obtaining correct results in the experiment. The model characteristics were documented, allowing for its future use as the reference case for testing the new labyrinth seal geometry. Experimentally validated numerical model of the flow in the labyrinth seal was developed. Research limitations/implications The research studies the basic case, future research on the case with a new labyrinth seal geometry is planned. Research is conducted on simplified case without rotation and the impact of the turbine main channel. Practical implications Importance of machining accuracy up to 0.01 mm was found to be important for measuring leakage in small gaps and decision making on the optimal configuration selection. Originality/value The research is an important step in the development of original modification of the labyrinth seal, resulting in leakage reduction, by serving as a reference case.


2018 ◽  
Vol 245 ◽  
pp. 02001 ◽  
Author(s):  
Evgenii Khrapunov ◽  
Sergei Solovev

The main ideas of the aerodynamic studies of large bridges are presented in present paper. Main types of aero-elastic instability for bridges with spans over 100 meters are considered. A two-step modeling approach is presented. At the first stage, the aerodynamic characteristics of the span fragment are considered, at the second.stage the characteristics of the whole bridge. Methods for investigation of bridge oscillations in a special-purpose experimental facility – the Landscape Wind Tunnel – are described. Examples of tests with elastic similar models of bridges are given, and measurements to mitigate dangerous oscillations early in the bridge design process are described.


Author(s):  
G. K. Conkol ◽  
T. Singh

As vehicles evolve through the concept phase, a wide variety of engines are usually considered. For long-life vehicles such as heavy armored tracked vehicles, gas turbines have been favored because of their weight and volume characteristics at high hp levels (1500 to 2000 hp). Many existing gas turbine engines, however, are undesirable for vehicular use because their original design philosophy was aircraft oriented. In a ground vehicle, mass flow and expense are only two areas in which these engines differ greatly. Because the designer generally is not given the freedom to design an engine from scratch, he must evaluate modifications of the basic Brayton cycle. In this study, various cycles are evaluated by using a design point program in order to optimize design parameters and to recommend a cycle for heavy vehicular use.


Sign in / Sign up

Export Citation Format

Share Document