The Impact of the Vortex Design Method on the Stall Behavior of Axial Flow Fan and Compressor Rotors

Author(s):  
Ja´nos Vad ◽  
Csaba Horva´th

The paper presents comparative studies on low-speed isolated rotors of free vortex design and controlled vortex design (CVD), in order to survey the impact of the vortex design method on the stall behavior of axial flow turbomachinery. The studies are based on 3D laser Doppler anemometer studies and global performance measurements, supplemented with literature data. CVD bladings are characterized by radially outward flow on the suction side due to spanwise changing circulation, and increased near-tip solidity and/or loading. These features were found to increase the near-tip endwall flow blockage and loss at the design flow rate, and to hasten stall. On this basis, it has been concluded that CVD tends to be disadvantageous from the viewpoint of the stall behavior. It was confirmed that forward blade sweep is a remedial strategy for moderating the stall-hastening effects of CVD, while retaining the favorable features of CVD.

Author(s):  
Ja´nos Vad ◽  
Ali R. A. Kwedikha ◽  
Helmut Jaberg

Experimental and computational studies were carried out in order to survey the energetic aspects of forward and backward sweep in axial flow rotors of low aspect ratio blading for incompressible flow. It has been pointed out that negative sweep tends to increase the lift, the flow rate and the ideal total pressure rise in the vicinity of the endwalls. Just the opposite tendency was experienced for positive sweep. The local losses were found to develop according to combined effects of sweep near the endwalls, endwall and tip clearance losses, and profile drag influenced by re-arrangement of the axial velocity profile. The forward-swept bladed rotor showed reduced total efficiency compared to the unswept and swept-back bladed rotors. This behavior has been explained on the basis of analysis of flow details. It has been found that the swept bladings of low aspect ratio tend to retain the performance of the unswept datum rotor even in absence of sweep correction.


Author(s):  
Takaharu Tanaka

There is a correlation between the efficiency of the pump to the head produced. On the axial flow pump, whose efficiency characteristic is favorable, the pressure head gradient between the impeller inlet and the outlet sections, at an equivalent flow rate, may become larger than that for the less favorable axial flow pump. This fundamental interrelation may be held in the flow passage regardless to the flow rate whichever they are operated at design or off design flow rate. There may be a direct correlation between the efficiency of an axial flow pump and the ratio of the discharge valve cross section divided by the pipeline cross section. The smaller this ratio is the better the pressure head gradient is for the same flow rates. This ratio may be useful to estimate relative grade of heads, pressure head gradients, internal flow conditions, and efficiency characteristics among axial flow pumps.


Author(s):  
Martin Chilla ◽  
Howard Hodson ◽  
David Newman

In core gas turbines relatively cold air is purged through the hub gap between stator and rotor in order to seal the disc space against flow ingestion from the main annulus. Although the sealing mass flow rate is commonly very small compared to the main annulus mass flow rate, it can have significant effects on the development of the passage endwall flows and on the overall loss generation. In this paper, the interaction between annulus and rim sealing flows is investigated using numerical simulations of a generic high-pressure turbine. At first, the numerical approach is validated by comparing the results of calculations to measurement data at the design flow conditions. Following that, results from steady and unsteady calculations are used to describe in detail the aerodynamics in overlap-type rim seals and their effects on the blade passage flow. It is found that the flow interaction at the rim seal interface is strongly influenced by the velocity deficit of the rim sealing flow relative to the annulus flow as well as by the circumferentially non-uniform pressure field imposed by the rotor blades. At typical sealing flow conditions, the flow interaction is found to be naturally unsteady, with periodical vortex shedding into the rotor passage. Finally, the influence of the specific rim seal shape on the flow unsteadiness at the rim seal interface is investigated and the impact on turbine performance is assessed.


Author(s):  
Fang-Ping Tang ◽  
Chao Liu ◽  
Ji-Ren Zhou ◽  
Hua Yang ◽  
Li Cheng

In this study, an axial flow pump impeller without guide vanes is experimentally investigated. The impeller used in the experiments consists of four blades. The particle image velocimetry technique and a five-hole probe have been used. Measurements of flow velocities in the outer part of the impeller have been made. PIV measurements have been realized in 12 meridian planes between blade-to-blade for design and off-design operating conditions. The meridian velocity is obtained with phase averaged method and the total circumferential mean velocity is obtained with an arithmetical average over the 12 circumferential data. The calculation is based on the CFX-TASC flow CFD code solving the three-dimensional Reynolds-averaged Navier-Stokes equation with RNG k–ε model of turbulence. The paper focuses on the comparisons of the results. Difference for the flow field between numerical and experimental results is small at large and design flow rate, while big difference occurs at small flow rate. It indicates that the numerical model is not suitable for separation flow.


Author(s):  
Francois G. Louw ◽  
Theodor W. von Backström ◽  
Sybrand J. van der Spuy

Large axial flow fans are used in forced draft air cooled heat exchangers (ACHEs). Previous studies have shown that adverse operating conditions cause certain sectors of the fan, or the fan as a whole to operate at very low flow rates, thereby reducing the cooling effectiveness of the ACHE. The present study is directed towards the experimental and numerical analyses of the flow in the vicinity of an axial flow fan during low flow rates. This is done to obtain the global flow structure up and downstream of the fan. A near-free-vortex fan, designed for specific application in ACHEs, is used for the investigation. Experimental fan testing was conducted in a British Standard 848, type A fan test facility, to obtain the fan characteristic. Both steady-state and time-dependent numerical simulations were performed, depending on the operating condition of the fan, using the Realizable k-ε turbulence model. Good agreement is found between the numerically and experimentally obtained fan characteristic data. Using data from the numerical simulations, the time and circumferentially averaged flow field is presented. At the design flow rate the downstream fan jet mainly moves in the axial and tangential direction, as expected for a free-vortex design criteria, with a small amount of radial flow that can be observed. As the flow rate through the fan is decreased, it is evident that the down-stream fan jet gradually shifts more diagonally outwards, and the region where reverse flow occur between the fan jet and the fan rotational axis increases. At very low flow rates the flow close to the tip reverses through the fan, producing a small recirculation zone as well as swirl at certain locations upstream of the fan.


Author(s):  
R. W. Westra ◽  
L. Broersma ◽  
K. van Andel ◽  
N. P. Kruyt

Two-dimensional Particle Image Velocimetry measurements and three-dimensional Computational Fluid Dynamics (CFD) analyses have been performed of the flow field inside the impeller of a low specific-speed centrifugal pump operating with a vaneless diffuser. Flow rates ranging from 80% to 120% of the design flow rate are considered in detail. It is observed from the velocity measurements that secondary flows occur. These flows result in the formation of regions of low velocity near the intersection of blade suction side and shroud. The extent of this jet-wake structure decreases with increasing flow rate. Velocity profiles have also been computed from Reynolds-averaged Navier-Stokes equations with the Spalart-Allmaras turbulence model, using a commercial CFD-code. For the considered flow rates the qualitative agreement between measured and computed velocity profiles is very good. Overall, the average relative difference between these velocity profiles is around 7%. Additional CFD computations have been performed to assess the influence of Reynolds number and shape of the inlet velocity profile on the computed velocity profiles. It is found that the influence of Reynolds number is mild. The shape of the inlet profile only has a weak effect at the shroud.


Author(s):  
Henner Schrapp ◽  
Arne Dodegge ◽  
Volker Gümmer ◽  
Neil W. Harvey ◽  
Jörn Städing ◽  
...  

Abstract The paper describes experimental investigations of an alternative shrouded stator concept in a 2.5 stage low speed compressor. The idea of this new concept is to raise the stator hub line by a small amount, thus decelerating the flow upstream of the shroud cavity due to the into wind step and raising the static pressure. Downstream of the cavity the out of wind step changes the streamline curvature thus lowering the static pressure locally. As a result, the static pressure difference across the shroud is lower and the shroud flow is reduced. Tests were done at three seal gap heights under stator 1, both with a “neutral” (in–line) hub and a six percent “bump shroud”, i.e. the hub is raised by six percent annulus height. Performance measurements show the impact of the “bump shroud” geometry on the overall behavior of the compressor, i.e. efficiency and pressure ratio and the variation of these quantities with varying seal gap height. While the efficiency and pressure ratio of the compressor inevitably reduce with increasing seal gap height, the sensitivity of both is reduced by using “bump shrouds”. At small seal gap heights the “bump shroud” design behaves similarly to the neutral one, while at the design seal gap height it is superior. Thus, both the efficiency and the pressure ratio are less sensitive against seal gap height variations if the compressor is equipped with a raised hub line — leading to a more robust product. A similar behavior is seen at near stall conditions. The analysis of five hole probe measurements reveals the reason for the improved efficiency. The stator 1 losses were significantly reduced by the introduction of the “bump shroud”. This is mostly due to the reduced amount of shroud flow and the subsequent reduction of hub cross–flow in the stator. A comparison of losses with and without the raised hub line show not only a reduction of the losses near the hub, but also adjacent to the suction side of the stator due to reduced migration of hub boundary layer fluid onto the vane.


Author(s):  
J. F. Combes ◽  
E. Rieutord

Detailed flow measurements in the impeller and the diffuser of an industrial centrifugal pump have been performed with a 2-component laser Doppler velocimeter. Measurements were made at 8 radial positions for flow rates ranging from 50% to 100% of design flow. The experimental results were compared to 3D turbulent flow calculations performed with a finite element code. At nominal flow rate, both measurements and calculations show a wake pattern along the suction side at the shroud. The flow is separated in the diffuser on the hub, and on the shroud at low flow rate. The inlet recirculation, occurring at 0.65 Qn is well predicted by the turbulent flow calculation.


1998 ◽  
Vol 120 (3) ◽  
pp. 201-207 ◽  
Author(s):  
Q. E. Hussain ◽  
M. A. R. Sharif

Fully developed laminar axial flow of yield-power-law fluids in eccentric annuli has been investigated numerically. The annuli may be fully open or partially blocked. General nonorthogonal, boundary-fitted curvilinear coordinates have been used to accurately model the irregular annular geometry due to the presence of a flow blockage. A computer code has been developed using a second-order finite-difference scheme. An exponential model for the shear stress, valid for both yielded and un-yielded regions of the flow, is used in the computation. The effects of pressure gradient, eccentricity, and blockage height on the flow rate have been studied and the results are presented. The flow rate is found to increase with increasing eccentricity for eccentric annuli without any blockage. For partially blocked eccentric annuli, the flow rate at a particular eccentricity decreases as the blockage height is increased.


Sign in / Sign up

Export Citation Format

Share Document