Synchronous Response to Rotor Imbalance Using a Damped Gas Bearing

Author(s):  
Bugra H. Ertas ◽  
Massimo Camatti ◽  
Gabriele Mariotti

One type of test performed for evaluating bearings for application into turbomachinery is the synchronous bearing response to rotor imbalance. This paper presents rotordynamic tests on a rotor system using a 70mm diameter damped gas bearing reaching ultra-high speeds of 50,000 rpm. The main objective of the study was to experimentally evaluate the ability of the damped gas bearing to withstand large rotor excursions and provide adequate damping through critical speed transitions. Two critical speeds were excited through varying amounts and configurations of rotor imbalance, while measuring synchronous rotordynamic response at two different axial locations. The results indicated a well-damped rotor system and demonstrated the ability of the gas bearing to safely withstand rotor vibration levels while subjected to severe imbalance loading. Also, a waterfall plot was used to verify ultra high-speed stability of the rotor system throughout the speed range of the test vehicle. In addition to the experimental tests, a rotordynamic computer model was developed for the rotor-bearing system. Using the amplitude/frequency dependent stiffness and damping coefficients for the ball bearing support and the damped gas-bearing support, a pseudo-nonlinear rotordynamic response to imbalance was performed and compared to the experiments.

Author(s):  
Bugra H. Ertas ◽  
Massimo Camatti ◽  
Gabriele Mariotti

One type of test performed for evaluating bearings for application into turbomachinery is the synchronous bearing response to rotor imbalance. This paper presents rotordynamic tests on a rotor system using a 70 mm diameter damped gas bearing reaching ultra-high speeds of 50,000 rpm. The main objective of the study was to experimentally evaluate the ability of the damped gas bearing to withstand large rotor excursions and provide adequate damping through critical speed transitions. Two critical speeds were excited through varying amounts and configurations of rotor imbalance while measuring the synchronous rotordynamic response at two different axial locations. The results indicated a well-damped rotor system and demonstrated the ability of the gas bearing to safely withstand rotor vibration levels while subjected to severe imbalance loading. Also, a waterfall plot was used to verify ultra-high-speed stability of the rotor system throughout the speed range of the test vehicle. In addition to the experimental tests, a rotordynamic computer model was developed for the rotor-bearing system. Using the amplitude/frequency dependent stiffness and damping coefficients for the ball bearing support and the damped gas-bearing support, a pseudononlinear rotordynamic response to imbalance was performed and compared with the experiments.


Author(s):  
Alberto Doria ◽  
Luca Taraborrelli ◽  
Nicola Segliani

In this paper the effect of front fork compliance on uncontrolled bicycle stability is analyzed. First the benchmark model of a bicycle is improved to take into account either torsion compliance or bending compliance of front fork, a lumped element approach is adopted introducing additional joints restrained by rotational springs and dampers. Two models having three degrees of freedom are developed and implemented in MATLAB codes to perform stability analysis. Then series of experimental tests are carried out on an advanced carbon fork and a standard steel fork, the modal analysis approach is adopted. Experimental methods and results are presented and discussed. A specific method is developed for identifying the stiffness and damping properties from the bending and torsion modes of the forks. Results obtained with the proposed method agree with data presented in literature. Finally, the identified stiffness and damping parameters are implemented in the simulation codes and some numerical simulations are carried out. Results presented in the paper show a small influence of torsion compliance on stability and a large influence of bending compliance on high speed stability.


2006 ◽  
Vol 129 (3) ◽  
pp. 850-857 ◽  
Author(s):  
Luis San Andrés ◽  
Dario Rubio ◽  
Tae Ho Kim

Gas foil bearings (GFBs) satisfy the requirements for oil-free turbomachinery, i.e., simple construction and ensuring low drag friction and reliable high speed operation. However, GFBs have a limited load capacity and minimal damping, as well as frequency and amplitude dependent stiffness and damping characteristics. This paper provides experimental results of the rotordynamic performance of a small rotor supported on two bump-type GFBs of length and diameter equal to 38.10mm. Coast down rotor responses from 25krpm to rest are recorded for various imbalance conditions and increasing air feed pressures. The peak amplitudes of rotor synchronous motion at the system critical speed are not proportional to the imbalance introduced. Furthermore, for the largest imbalance, the test system shows subsynchronous motions from 20.5krpm to 15krpm with a whirl frequency at ∼50% of shaft speed. Rotor imbalance exacerbates the severity of subsynchronous motions, thus denoting a forced nonlinearity in the GFBs. The rotor dynamic analysis with calculated GFB force coefficients predicts a critical speed at 8.5krpm, as in the experiments; and importantly enough, unstable operation in the same speed range as the test results for the largest imbalance. Predicted imbalance responses do not agree with the rotor measurements while crossing the critical speed, except for the lowest imbalance case. Gas pressurization through the bearings’ side ameliorates rotor subsynchronous motions and reduces the peak amplitudes at the critical speed. Posttest inspection reveal wear spots on the top foils and rotor surface.


Author(s):  
B. A. Jujnovich ◽  
D. Cebon

Passive steering systems have been used for some years to control the steering of trailer axles on articulated vehicles. These normally use a “command steer” control strategy, which is designed to work well in steady-state circles at low speeds, but which generates inappropriate steer angles during transient low-speed maneuvers and at high speeds. In this paper, “active” steering control strategies are developed for articulated heavy goods vehicles. These aim to achieve accurate path following for tractor and trailer, for all paths and all normal vehicle speeds, in the presence of external disturbances. Controllers are designed to implement the path-following strategies at low and high speeds, whilst taking into account the complexities and practicalities of articulated vehicles. At low speeds, the articulation and steer angles on articulated heavy goods vehicles are large and small-angle approximations are not appropriate. Hence, nonlinear controllers based on kinematics are required. But at high-speeds, the dynamic stability of control system is compromised if the kinematics-based controllers remain active. This is because a key state of the system, the side-slip characteristics of the trailer, exhibits a sign-change with increasing speeds. The low and high speed controllers are blended together using a speed-dependent gain, in the intermediate speed range. Simulations are conducted to compare the performance of the new steering controllers with conventional vehicles (with unsteered drive and trailer axles) and with vehicles with command steer controllers on their trailer axles. The simulations show that active steering has the potential to improve significantly the directional performance of articulated vehicles for a wide range of conditions, throughout the speed range.


Author(s):  
Ross N. Headifen ◽  
Robert L. Fuller ◽  
Jon R. Kitzmiller

Abstract A high speed (25,000 rpm) routing machine with a 300 lb rotor was designed and manufactured. To accommodate the high shaft speed, 2.6 million DN, rolling element bearings were used with ceramic balls and inner races. In order to control the magnitude of the vibration, damping was incorporated into the system using nonrotating hydrostatic dampers. The journal for the dampers was a cylindrical cartridge that had the rolling element bearings clamped inside of it. Extensive analysis was performed on this system. A computer program was written that could model the orbit path of the lumped mass shaft in the damper over the full speed range. A second program was also written that calculated the damper nonlinear stiffness and damping coefficients, and incorporated them in with a one-dimensional beam, finite element rotordynamics model of the system. Analysis results are presented along with experimental run data from the machine. Balancing problems encountered during commissioning have limited the results to 16,500 rpm to date. The last of which is currently being remedied.


2022 ◽  
Vol 12 (2) ◽  
pp. 615
Author(s):  
Haobo Wang ◽  
Yulai Zhao ◽  
Zhong Luo ◽  
Qingkai Han

Squeeze film damper (SFD) is widely used in the vibration suppression of aeroengine rotor systems, but will cause complex motions of the rotor system under specific operating conditions. In this paper, a lumped-mass dynamic model of the high-pressure rotor system in an aeroengine is established, and the nonlinear stiffness and damping formula of SFD are introduced into the above model. The vibration responses of the rotor system under different rotating speeds and with different unbalances are investigated numerically, and the influence of SFD on the rotor system vibration and the change of suppression ability are compared and analyzed. The results show that in the case of high speed, together with a small unbalance, the rotor system will perform a complex vibration or a bistable vibration due to SFD. If the unbalance is properly increased under the same case of high speed, the vibration of the rotor becomes single-harmonic and the bistable vibration disappears. The research results can provide a helpful reference for analyzing complex vibration mechanisms of the rotor system with SFD and achieving an effective vibration suppression through unbalance regulation.


Author(s):  
Wenzhen Xie ◽  
Chao Liu ◽  
Nanfei Wang ◽  
Dongxiang Jiang

Dual-rotor systems are widely used in aero-engines, in which rubbing–misalignment mixed faults are essential, as both are frequently observed and can occur simultaneously due to the harsh working conditions of high temperature, high pressure, and high speed. To analyze the vibration characteristics of such faults, a dual-rotor system model is established and dynamic responses under varying parameters of the dual-rotor system with rubbing–misalignment mixed fault are investigated. Through numerical simulation, the effects of speed ratio, rubbing clearance, and rubbing stiffness on the dual-rotor system with rubbing–misalignment fault are revealed. Meanwhile, experimental tests are conducted for validation, the main findings of which are that the characteristic frequency components could benefit the diagnosis of mixed faults in dual-rotor systems.


Author(s):  
S.M. Ramesh Balaji ◽  
C. Muniraj

Despite the need of a complex motor controller, the simple construction of BLDC motors offers several inherent advantages not provided with brushed DC motors in terms of low inertia, high torque and a very wide speed range. The BLDC motors include, Longer service life due to a lack of electrical and friction losses and also free maintenance due to a lack of brushes and mechanical commutators. The EMI and noise are reduced because of the elimination of ionizing spikes from brushes. The control system of BLDCM is highly complex drive due to nonlinear nature. In such a system for implementing control algorithm needs high speed processor. In this work the controller Xilinx Spartan-6 FPGA is a demonstration platform intended to become familiar with the new features and availability of the Spartan-6 FPGA. The various experimental tests are carried out in 3Ф BLDCM .The experimental results are reported in order to verify the steady state, transient and robustness performance of the controller.


2012 ◽  
Vol 452-453 ◽  
pp. 1408-1414
Author(s):  
Jun Liu ◽  
Qiao Sun

In rotating machinery, vibration resonance with large amplitude and complex pattern occurs at critical speeds due to rotor imbalance and nonlinear effects. In this paper, a vibration control method is proposed for a rotor system supported by a ball bearing and an electro-magnetic bearing. In particular, a disturbance observer combined with the current delay estimation is implemented to improve the controller's ability of compensating for system's nonlinear effects and uncertainty. As a result, the rotor vibration is suppressed to very small amplitudes in the entire operating speed range. The proposed method is validated through numerical simulations and experiments.


Sign in / Sign up

Export Citation Format

Share Document