CFD Analysis of a Canned Pump Rotor Considering an Annular Fluid With Axial Flow

Author(s):  
Alexandrina Untaroiu ◽  
Timothy W. Dimond ◽  
Paul E. Allaire ◽  
Richard Armentrout

Instability in rotor-bearing systems can lead to high levels of vibration, that can ultimately result in the destruction of rotating machines or lost production due to reduced speeds and flow rates. Thus, accurate characterization of instability drivers is vital in prediction of the stability of rotor-bearing-structural systems, allowing for design changes to reduce deleterious effects. These changes include alteration of the system component causing instability and alteration of the bearing design to improve the overall system stability. A source of destabilizing forces in vertical canned motor pumps arises from fluid-structure interaction (FSI) forces between the rotor can and the stator. In this paper, the FSI forces are modeled using an analysis of a long annular fluid filled region with an axial flow component. The model includes the effects of pre-swirl of the fluid entering the annulus. The rotor center static operating position is eccentric to the stator center due to manufacturing tolerances. The fluid forces are calculated using computational fluid dynamics (CFD) and are expressed in terms of equivalent stiffness, damping and fluid inertia (added mass) rotordynamic coefficients. The rotordynamic coefficients are identified using CFD by simulating non-synchronous perturbations of the rotor position and velocity around the static operating point. A separate set of simulations, which does not consider the effects of axial flow on the rotordynamic coefficients, are performed to facilitate direct comparison between the CFD predictions and the dynamic coefficients calculated using the bulk-flow method developed by Fritz.

Author(s):  
N. S. Feng ◽  
E. J. Hahn

The stability of rotating machinery consisting of flexible rotors supported by fluid film bearings is significantly affected by the dynamic characteristics of the bearings and in particular, the bearing profiles as well as the bearing reaction loads, which, in statically indeterminate systems, are in turn strongly influenced by the relative transverse alignment of the bearings. Using a simple four bearing statically indeterminate model, it is shown that relatively simple variants of the circular bearings, viz. elliptic and 2-pad offset bearings display better system stability characteristics systems in aligned situations and are also more likely to be stable in misaligned situations.


1996 ◽  
Vol 118 (1) ◽  
pp. 115-121 ◽  
Author(s):  
W. J. Chen

A direct numerical method for the determination of instability threshold and stability boundaries of flexible rotor-bearing systems is presented. The proposed procedure can also be used to improve the system stability by considering the design variables as operating parameters. The finite element method is utilized in the formulation of system equations of motion. The numerical algorithm is based on nonlinear optimization techniques. Two examples are presented to illustrate the feasibility, desirability, and ability of the proposed algorithm. A simple journal bearing system is used for the parametric study. An industrial high-speed compressor is employed to demonstrate the ability of this algorithm to deal with practical applications. The stability boundaries calculated from this algorithm are in agreement with the experimental results.


1999 ◽  
Vol 66 (3) ◽  
pp. 660-664 ◽  
Author(s):  
R. O. Hryniv ◽  
P. Lancaster ◽  
A. A. Renshaw

A stability criterion for parameter-dependent gyroscopic systems is established and three examples are used to illustrate its application to typical engineering problems. In a number of practical situations, the criterion can be used to predict system stability with little actual computation and without solving any eigenvalue problem or approximating the eigenvalue locus. Thus, the criterion provides designers with a quick and accurate tool for assessing the stability consequences of potential design changes.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Samuel F. Asokanthan ◽  
Soroush Arghavan ◽  
Mohamed Bognash

Effect of stochastic fluctuations in angular velocity on the stability of two degrees-of-freedom ring-type microelectromechanical systems (MEMS) gyroscopes is investigated. The governing stochastic differential equations (SDEs) are discretized using the higher-order Milstein scheme in order to numerically predict the system response assuming the fluctuations to be white noise. Simulations via Euler scheme as well as a measure of largest Lyapunov exponents (LLEs) are employed for validation purposes due to lack of similar analytical or experimental data. The response of the gyroscope under different noise fluctuation magnitudes has been computed to ascertain the stability behavior of the system. External noise that affect the gyroscope dynamic behavior typically results from environment factors and the nature of the system operation can be exerted on the system at any frequency range depending on the source. Hence, a parametric study is performed to assess the noise intensity stability threshold for a number of damping ratio values. The stability investigation predicts the form of threshold fluctuation intensity dependence on damping ratio. Under typical gyroscope operating conditions, nominal input angular velocity magnitude and mass mismatch appear to have minimal influence on system stability.


2021 ◽  
Vol 9 (7) ◽  
pp. 767
Author(s):  
Shin-Pyo Choi ◽  
Jae-Ung Lee ◽  
Jun-Bum Park

The enlargement of ships has increased the relative hull deformation owing to draft changes. Moreover, design changes such as an increased propeller diameter and pitch changes have occurred to compensate for the reduction in the engine revolution and consequent ship speed. In terms of propulsion shaft alignment, as the load of the stern tube support bearing increases, an uneven load distribution occurs between the shaft support bearings, leading to stern accidents. To prevent such accidents and to ensure shaft system stability, a shaft system design technique is required in which the shaft deformation resulting from the hull deformation is considered. Based on the measurement data of a medium-sized oil/chemical tanker, this study presents a novel approach to predicting the shaft deformation following stern hull deformation through inverse analysis using deep reinforcement learning, as opposed to traditional prediction techniques. The main bearing reaction force, which was difficult to reflect in previous studies, was predicted with high accuracy by comparing it with the measured value, and reasonable shaft deformation could be derived according to the hull deformation. The deep reinforcement learning technique in this study is expected to be expandable for predicting the dynamic behavior of the shaft of an operating vessel.


2013 ◽  
Vol 846-847 ◽  
pp. 190-194
Author(s):  
Shu Jun Yin ◽  
Xue Ren Li ◽  
Ji Geng Luo

The paper designs a three-phase high voltage power supply system based on active disturbance rejection controller which make single-chip microcomputer ATmega128 as the main control chip and the system improve the stability and control precision of dust removing power. Engineering practice shows that, the DC power supply system has the advantages of convenient operation, high work efficiency, system stability.


Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 333
Author(s):  
Jian Le ◽  
Hao Zhang ◽  
Cao Wang ◽  
Xingrui Li ◽  
Jiangfeng Zhu

To enhance the stability and accuracy of the digital-physical hybrid simulation system of a modular multilevel converter-based high voltage direct current (MMC-HVDC) system, this paper presents an improved power interface modeling algorithm based on ideal transformer method (ITM). By analyzing the stability condition of a hybrid simulation system based on the ITM model, the current of a so-called virtual resistance is added to the control signal of the controlled current source in the digital subsystem, and the stability of the hybrid simulation system with the improved power interface model is analyzed. The value of the virtual resistance is optimized by comprehensively considering system stability and simulation precision. A two-terminal bipolar MMC-HVDC simulation system based on the proposed power interface model is established. The comparisons of the simulation results verify that the proposed method can effectively improve the stability of the hybrid simulation system, and at the same time has the advantages of high simulation accuracy and easy implementation.


1985 ◽  
Vol 107 (4) ◽  
pp. 421-425 ◽  
Author(s):  
G. S. Triantafyllou ◽  
C. Chryssostomidis

The equation of motion of a long slender beam submerged in an infinite fluid moving with constant speed is derived using Hamilton’s principle. The upstream end of the beam is pinned and the downstream end is free to move. The resulting equation of motion is then used to perform the stability analysis of a string, i.e., a beam with negligible bending stiffness. It is found that the string is stable if (a) the external tension at the free end exceeds the value of a U2, where a is the “added mass” of the string and U the fluid speed; or (b) the length-over-diameter ratio exceeds the value 2Cf/π, where Cf is the frictional coefficient of the string.


2002 ◽  
Vol 124 (3) ◽  
pp. 494-505 ◽  
Author(s):  
Kiyoshi Hatakenaka ◽  
Masato Tanaka ◽  
Kenji Suzuki

A new modified Reynolds equation is derived with centrifugal force acting on the hydrodynamic oil film being considered. This equation, together with a cavitation model, is used to obtain the steady-state equilibrium and calculate the rotordynamic coefficients of lightly loaded floating bush journal bearings operating at very high shaft speeds. The bush-to-shaft speed ratio and the linear cross-coupling spring coefficients of the inner oil film is found to decrease with the increase in shaft speed as the axial oil film rupture develops in the inner oil film. The present model can give reasonable explanation to the steady-state behavior and the stability behavior of the bearing observed in actual machines.


Author(s):  
H. R. Born

This paper presents an overview of the development of a reliable bearing system for a new line of small turbochargers where the bearing system has to be compatible with a new compressor and turbine design. The first part demonstrates how the increased weight of the turbine, due to a 40 % increase in flow capacity, influences the dynamic stability of the rotor-bearing system. The second part shows how stability can be improved by optimizing important floating ring parameters and by applying different bearing designs, such as profiled bore bearings supported on squeeze film dampers. Test results and stability analyses are included as well as the criteria which led to the decision to choose a squeeze film backed symmetrical 3-lobe bearing for this new turbocharger design.


Sign in / Sign up

Export Citation Format

Share Document