Numerical Study of Discrete Tip Injection in a Transonic Axial Compressor

Author(s):  
Hossein Khaleghi ◽  
Joao A. Teixeira

This paper reports on a time-accurate simulation of discrete tip injection upstream of a transonic axial compressor, NASA Rotor-67. Twenty two discrete injectors were placed around the casing upstream of the blade to investigate the effect of injector-rotor interaction at near-stall condition. Time-accurate simulations were performed with and without tip injection at stable and unstable operating points. Although the injected mass flow rate is very small, the range extension obtained promises the effective use of such injection in suppressing rotating stall at early stages of formation, with almost no efficiency penalty incurred. The effect of injection on the tip flow structure and unsteady response of the leakage flow are presented and discussed. Results indicate that injection periodically pushes the tip leakage vortex and passage shock rearward. The location of the leakage vortex with injection was found to be backward of that without injection, at the near-stall condition of the non-injection case. At the near-stall point of the injection case, however, the tip leakage vortex was at some situations rearward and at some situations forward, as compared with the non-injection case. In other words, the leakage vortex in the injection case oscillates around the location of the time-averaged leakage vortex without injection. This is the situation, at which, the interface between the leakage and oncoming flows tends to become parallel to the leading-edge plane. The effect of injection on the boundary layer separation from the casing wall is also investigated. The rotor operation at in-stall condition for both the injection and non-injection cases is studied and the path into instability is discussed for each case. The propagation of a low-velocity region near the pressure surface and leading-edge of the blade was found to be responsible for the detachment of the passage shock from the leading-edge and upstream movement of the leakage vortex, leading to the occurrence of the leading-edge vortex spillage, for both the injection and non-injection cases.


Author(s):  
Xiaochen Mao ◽  
Bo Liu

Unsteady computations of a counter-rotating axial compressor are performed and analyzed to investigate the unsteady behaviors in the compressor and the role of the tip leakage flow together with the rotating stall inception process. The results show that the oscillation on the pressure side is much stronger than that on the suction surface for both rotors, especially near the tip region where the trajectory of the tip leakage vortex (TLV) interacts with the blades most often. There exists a periodical leading edge spillage of the interface in rotor2 due to the unsteadiness of tip leakage flow (TLF) at near-stall condition. The blockage generated by the TLV increases dramatically due to the increasing strength of the TLV and the backflow phenomenon as the mass flow decreased. The appearance of the frequency components of 0.5 blade passing frequency (BPF) and 1.5BPF from 0.64BPF can be viewed as the rotating stall inception warning. The fluctuation strength of oscillation frequencies of 0.5BPF and 1.5BPF decreases rapidly from leading edge to trailing edge in rotor2, which indicates that the unsteady fluctuation of TLF at the leading edge in rotor2 is responsible for the stall inception of the compressor. Additionally, both the leading edge spillage and trailing edge backflow phenomena are observed for spike initiated rotating stall at stall point.



Author(s):  
K. Yamada ◽  
K. Funazaki ◽  
H. Sasaki

The purpose of this study is to have a better understanding of the unsteady behavior of tip clearance flow at near-stall condition from a multi-passage simulation and to clarify the relation between such unsteadiness and rotating disturbance. This study is motivated by the following concern. A single passage simulation has revealed the occurrence of the tip leakage vortex breakdown at near-stall condition in a transonic axial compressor rotor, leading to the unsteadiness of the tip clearance flow field in the rotor passage. These unsteady flow phenomena were similar to those in the rotating instability, which is classified in one of the rotating disturbances. In other words it is possible that the tip leakage vortex breakdown produces a rotating disturbance such as the rotating instability. Three-dimensional unsteady RANS calculation was conducted to simulate the rotating disturbance in a transonic axial compressor rotor (NASA Rotor 37). The four-passage simulation was performed so as to capture a short length scale disturbance like the rotating instability and the spike-type stall inception. The simulation demonstrated that the unsteadiness of tip leakage vortex, which was derived from the vortex breakdown at near-stall condition, invoked the rotating disturbance in the rotor, which is similar to the rotating instability.



2000 ◽  
Vol 2000.53 (0) ◽  
pp. 1-2
Author(s):  
Kazutoyo YAMADA ◽  
Yoshinori TAGUCHI ◽  
Kazuhisa SAIKI ◽  
Masato FURUKAWA ◽  
Masahiro INOUE


Author(s):  
Hongwei Ma ◽  
Haokang Jiang

This paper presents an experimental study of the three-dimensional turbulent flow field in the tip region of an axial flow compressor rotor passage at a near stall condition. The investigation was conducted in a low-speed large-scale compressor using a 3-component Laser Doppler Velocimetry and a high frequency pressure transducer. The measurement results indicate that a tip leakage vortex is produced very close to the leading edge, and becomes the strongest at about 10% axial chord from the leading edge. Breakdown of the vortex periodically occurs at about 1/3 chord, causing very strong turbulence in the radial direction. Flow separation happens on the tip suction surface at about half chord, prompting the corner vortex migrating toward the pressure side. Tangential migration of the low-energy fluids results in substantial flow blockage and turbulence in the rear of a rotor passage. Unsteady interactions among the tip leakage vortex, the separated vortex and the corner flow should contribute to the inception of the rotating stall in a compressor.



Author(s):  
Ashwin Ashok ◽  
Patur Ananth Vijay Sidhartha ◽  
Shine Sivadasan

Abstract Tip clearance of axial compressor blades allows leakage of the flow, generates significant losses and reduces the compressor efficiency. The present paper aims to discuss the axial compressor tip aerodynamics for various configurations of tip gap with trench. The various configurations are obtained by varying the clearance, trench depth, step geometry and casing contouring. In this paper the axial compressor aerodynamics for various configurations of tip gap with trench have been studied. The leakage flow structure, vorticity features and entropy generations are analyzed using RANS based CFD. The linear compressor cascade comprises of NACA 651810 blade with clearance height varied from 0.5% to 2% blade span. Trail of the tip leakage vortex and the horseshoe vortex on the blade suction side are clearly seen for the geometries with and without casing treatments near the stalling point. Since the trench side walls are similar to forward/backing steps, a step vortex is observed near the leading edge as well as trailing edge of the blade and is not seen for the geometry without the casing treatment. Even though the size of the tip leakage vortex seams to be reduces by providing a trench to the casing wall over the blade, the presence of additional vortices like the step vortex leads to comparatively higher flow losses. An increase in overall total pressure loss due to the application of casing treatment is observed. However an increase in stall margin for the geometries with casing is noted.



Author(s):  
K. Yamada ◽  
M. Furukawa ◽  
T. Nakano ◽  
M. Inoue ◽  
K. Funazaki

Unsteady three-dimensional flow fields in a transonic axial compressor rotor (NASA Rotor 37) have been investigated by unsteady Reynolds-averaged Navier-Stokes simulations. The simulations show that the breakdown of the tip leakage vortex occurs in the compressor rotor because of the interaction of the vortex with the shock wave. At near-peak efficiency condition small bubble-type breakdown of the tip leakage vortex happens periodically and causes the loading of the adjacent blade to fluctuate periodically near the leading edge. Since the blade loading near the leading edge is closely linked to the swirl intensity of the tip leakage vortex, the periodic fluctuation of the blade loading leads to the periodic breakdown of the tip leakage vortex, resulting in self-sustained flow oscillation in the tip leakage flow field. However, the tip leakage vortex breakdown is so weak and small that it is not observed in the time-averaged flow field at near-peak efficiency condition. On the other hand, spiral-type breakdown of the tip leakage vortex is caused by the interaction between the vortex and the shock wave at near-stall operating condition. The vortex breakdown is found continuously since the swirl intensity of tip leakage vortex keeps strong at near-stall condition. The spiral-type vortex breakdown has the nature of self-sustained flow oscillation and gives rise to the large fluctuation of the tip leakage flow field, in terms of shock wave location, blockage near the rotor tip and three-dimensional separation structure on the suction surface. It is found that the breakdown of the tip leakage vortex leads to the unsteady flow phenomena near the rotor tip, accompanying large blockage effect in the transonic compressor rotor at the near-stall condition.



2020 ◽  
Vol 37 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Bin Jiang ◽  
Xiangtong Shi ◽  
Qun Zheng ◽  
Qingfang Zhu ◽  
Zhongliang Chen ◽  
...  

AbstractThe onset of spike stall induced by the interaction of hub corner separation flow with the tip leakage flow is investigated in detail by numerical method in this paper. The time resolved results indicate that the remarkable radial secondary flow from hub to tip near the trailing edge is formed when the compressor approaching rotating stall. The radial secondary flow is unstable and cross-passages propagates, which flows in and away out of the tip region periodically. The disturbance caused by radial secondary flow will influence the tip leakage flow directly by reforming the vortexes in blade tip region. A secondary vortex which comes from the radial migration of corner separation and is induced by the tip leakage vortex appears in the tip region. The simulation result demonstrates that the generation of the secondary vortex is an important symbol of blockage growth in the tip region at the stall inception phase. The disturbance produced by secondary vortex is an incentive of the leading edge overflow and the intensity of secondary vortex could be used as a criterion of rotating stall before leading edge spillage.



Author(s):  
Takahiro Nishioka ◽  
Shuuji Kuroda ◽  
Tsukasa Nagano ◽  
Hiroshi Hayami

An experimental study was conducted to investigate the inception patterns of rotating stall at different rotor blade stagger-angle settings with the aim of extending the stable operating range for a variable-pitch axial-flow fan. Pressure and velocity fluctuations were measured for a low-speed axial-flow fan with a relatively large tip clearance. Two stagger-angle settings were tested, the design setting, and a high setting which was 10 degrees greater than the design setting. Rotating instability (RI) was first observed near the peak pressure-rise point at both settings. It propagated in the rotation direction at about 40 to 50% of the rotor rotation speed, and its wavelength was about one rotor-blade pitch. However, the stall-inception patterns differed between the two settings. At the design stagger-angle setting, leading edge separation occurred near the stall-inception point, and this separation induced a strong tip leakage vortex that moved upstream of the rotor. This leakage vortex simultaneously induced a spike and a RI. The conditions for stall inception were consistent with the simple model of the spike-type proposed by Camp and Day. At the high stagger-angle setting, leading edge separation did not occur, and the tip leakage vortex did not move upstream of the rotor. Therefore, a spike did not appear although RI developed at the maximum pressure-rise point. This RI induced a large end-wall blockage that extended into the entire blade passage downstream of the rotor. This large blockage rapidly increased the rotor blade loading and directly induced a long length-scale stall cell before a spike or modal disturbance appeared. The conditions for stall inception were not consistent with the simple models of the spike or modal-type. These findings indicate that the movement of the tip leakage vortex associated with the rotor blade loading affects the development of a spike and RI and that the inception pattern of a rotating stall depends on the stagger-angle setting of the rotor blades.



Author(s):  
Chenkai Zhang ◽  
Jun Hu ◽  
Zhiqiang Wang ◽  
Wei Yan ◽  
Chao Yin ◽  
...  

To deepen the knowledge of tip leakage flow/vortex flow structure in the tip clearance of axial compressor rotors, this paper presents steady numerical studies on a subsonic rotor. The rotor and its related low-speed large-scale repeating-stage axial compressor are used for low-speed model testing of a modern high-pressure compressor. Results were first compared with available experimental data to validate adopted numerical method. Then complex endwall flow structure and flow loss mechanism at design operating point were studied. At last, comparisons were made for tip leakage vortex structure, interface of the leakage flow/main flow, endwall blockage and loss between design and near-stall operating points. Results show that only the spilled flows below 62.5% clearance height at the leading edge will roll into tip leakage vortex for this rotor. In addition, tip leakage vortex plays a secondary important role for higher positions, where secondary leakage flow occurs and occupies broader chordwise range. Although tip leakage vortex would expand and strongly mix with the mainflow when it propagates downstream, which leads to a rapid reduction of the normalized streamwise vorticity, the value of the normalized helicity shows that concentrated vortex feature is still maintained.



Author(s):  
A. F. Mustaffa ◽  
V. Kanjirakkad

Abstract The stability limit of a tip-stalling axial compressor is sensitive to the magnitude of the near casing blockage. In transonic compressors, the presence of the passage shock could be a major cause for the blockage. Identification and elimination of this blockage could be key to improving the stability limit of the compressor. In this paper, using numerical simulation, the near casing blockage within the transonic rotor, NASA Rotor 37, is quantified using a blockage parameter. For a smooth casing, the blockage at conditions near stall has been found to be maximum at about 20% of the tip axial chord downstream of the tip leading edge. This maximum blockage location is found to be consistent with the location of the passage shock-tip leakage vortex interaction. A datum single casing groove design that minimises the peak blockage is found through an optimisation approach. The stall margin improvement of the datum casing groove is about 0.6% with negligible efficiency penalty. Furthermore, the location of the casing groove is varied upstream and downstream of the datum location. It is shown that the stability limit of the compressor is best improved when the blockage is reduced upstream of the peak blockage location. The paper also discusses the prospects of a multi-groove casing configuration.



Sign in / Sign up

Export Citation Format

Share Document