Numerical Investigations on the Leakage Flow Characteristics of Pocket Damper Seals

Author(s):  
Zhigang Li ◽  
Jun Li ◽  
Zhenping Feng ◽  
Jiandao Yang ◽  
Rui Yang ◽  
...  

The effects of pressure ratios, rotational speeds and sealing clearances on the leakage flow characteristics of pocket damper seals (PDS) were numerically investigated using Reynolds-Averaged Navier-Stokes (RANS) solutions. The leakage flow rate of the experimental PDS with the eight-bladed and eight-pocket was conducted at three different pressure drops and three different rotational speeds. The numerical results were in agreement with the experimental data. Six pressure ratios, four rotational speeds and four sealing clearances were utilized to study the effects of theses factors on the leakage flow characteristics of the PDS. Numerical results show that the leakage rate of the PDS increases with decreased pressure ratio. The leakage rate decreases with the increasing rotational speed, and this phenomenon is more pronounced at higher rotational speed. At the highest rotational speed 20200rpm, the flow coefficient is up to 4.4% less than that of the non-rotating case. The leakage rate increases linearly with sealing clearance increasing. The comparison of the leakage flow rate shows that the PDS leaks slightly less than that of the labyrinth seal at the same pressure ratio, rotational speed and sealing clearance, especially at the higher rotational speed case. Furthermore, the circumferential partition wall can significantly decrease the circumferential flow in the PDS cavity. At the highest rotational speed with 20200rpm, the swirl ratio in the active and inactive cavity of the PDS is reduced by 94.5% and 46% compared to the labyrinth seal, respectively.

Author(s):  
Jun Li ◽  
Xin Yan ◽  
Zhenping Feng

Labyrinth seals represent an important flow element in the sealing equipment of modern turbomachinery industries. The straight-through and stepped labyrinth seal are widely used in modern steam turbine due to their comparable simple structure and low manufactured costs. The influence of pressure ratio and fin pitch on the leakage flow characteristics of the straight-through and stepped labyrinth seals is numerically determined. The pressure ratio is defined as the outlet static pressure divided by the inlet total pressure. The fin pitch varied in the fixed axial distance of the labyrinth seal. The geometries investigated represent designs of the straight-through and stepped labyrinth seal typical for modern steam turbines. The leakage flow fields in the high rotating straight-through and stepped labyrinth seals are obtained by the Reynolds-Averaged Navier-Stokes solution using the commercial software FLUENT with the fixed seal clearance and fins geometrical structure. The effect of the rotational axis is also taken into account in numerical computations. Numerical simulations covered a range of pressure ratio and fin pitch for the straight-through and stepped labyrinth seals. Dimensionless discharge coefficients, describing the sealing performance, are calculated from the simulation results. The numerical results show that pressure ratio and fin pitch both affects the sealing performance with the fixed seal clearance and fin geometrical structure. The leakage flow rate decreases with the decreasing fin pitch for both the straight-through and stepped labyrinth seal at the fixed pressure ratio. Furthermore, the leakage flow rate decreases with the increasing pressure ratio at the fixed fin pitch for two kinds of labyrinth seals in the present study. This research provides technical support for improved design of labyrinth seals in turbomachinery.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Lingzi Wang ◽  
Jianmei Feng ◽  
Mingfeng Wang ◽  
Zenghui Ma ◽  
Xueyuan Peng

In the reciprocating labyrinth piston compressor, the characteristic of the internal leakage is crucial for the leakage management and performance improvement of the compressor. However, most of the published studies investigated the rotor-stator system, and those who study the reciprocating piston-cylinder system basically focus on the effects of the geometrical parameters. These conclusions could not directly be applied to predict the real-time leakage flow rate through the labyrinth seal because of the fast reciprocating motion of the piston, which will cause continually pressure change in two compression chambers, and then the pressure fluctuation will affect the flow through the labyrinth seal. A transient simulation model employing the multiscale dynamic mesh, which considers the effect of the reciprocating motion of the piston in the cylinder, is established to identify the characteristics of the internal leakage. This model was verified by a specially designed compressor, and the influence of various parameters was analyzed in detail. The sealing performance decreased linearly with the increase in the pressure ratio, and higher pressure inlet leads to higher leakage flow under the same pressure ratio. The labyrinth seal performance positively correlated to the increase of the rotational speed. Leakage characteristics of five working mediums were carried out, and the results indicated that the relative leakage decreased with an increase in the relative molecular mass. From this study, the realistic internal leakage flow rate under different operating parameters in the reciprocating labyrinth piston compressor could be predicated.


Author(s):  
Zhigang Li ◽  
Jun Li ◽  
Xin Yan ◽  
Zhenping Feng

Effects of pressure ratio and rotational speed on the leakage flow and cavity pressure characteristics of the rotating staggered labyrinth seal were investigated by means of experimental measurements and numerical simulations. The rotating seal test rig with turbine flowmeter and pressure measuring instruments was utilized to investigate the leakage flow of the staggered labyrinth seal at eight pressure ratios and five rotational speeds. The repeatability of the experimental data was demonstrated by three times measurements at different pressure ratios and fixed rotational speed. The three-dimensional Reynolds-averaged Navier–Stokes equations and standard k-ε turbulent model were also applied to study the leakage flow characteristics of the staggered labyrinth seal at the experimental conditions. The validation of the numerical approach was verified through comparison of the experimental data. The detailed flow field in the staggered labyrinth seal was illustrated according to the numerical simulations. The experimental and numerical results show that the leakage flow coefficient increases with increasing pressure ratio at the fixed rotational speed and is more sensitive to the smaller pressure ratio. The influence of rotational speed on the leakage flow coefficient is not obvious in the present rotational speed limitations. The cavity pressure coefficient in the staggered labyrinth seal decreases and is significantly influenced by the cavity structure along the flow direction.


Author(s):  
Jun Li ◽  
Xin Yan ◽  
Guojun Li ◽  
Zhenping Feng

Honeycomb stepped labyrinth seals in turbomachinery enhance aerodynamic efficiency by reducing leakage flow losses through the clearance between rotating and stationary components. The influence of pressure ratio and sealing clearance on the leakage flow characteristics in the honeycomb stepped labyrinth seal is numerically determined. The geometries investigated represent designs of the honeycomb labyrinth seal typical for modern turbomachinery. The leakage flow fields in the honeycomb and smooth stepped labyrinth seals are obtained by the Reynolds-Averaged Navier-Stokes solution using the commercial software FLUENT. Numerical simulations covered a range of pressure ratio and three sizes of sealing clearance for the honeycomb and smooth stepped labyrinth seals. The numerical discharge coefficients of the non-rotating honeycomb and smooth stepped labyrinth seals are in good agreement with previous experimental data. In addition rotational effects are also taken into account in numerical computations. The numerical results show that the leakage flow rate increases with the increasing pressure ratio at the fixed sealing clearance for the rotating and non-rotating honeycomb labyrinth seal. The influence of the sealing clearance on the leakage flow pattern for the rotating and non-rotating honeycomb labyrinth seal are observed. Moreover, the similar leakage flow rates are obtained at the same flow condition between the rotating and non-rotating honeycomb labyrinth seal due to the honeycomb acts to kill swirl velocity development for the rotating honeycomb labyrinth seal.


Author(s):  
Dengqian Ma ◽  
Yuanqiao Zhang ◽  
Zhigang Li ◽  
Jun Li ◽  
Xin Yan

Abstract Brush seals are widely applied in turbomachinery to control leakage flow between the stationary and rotational components due to the high sealing performance. In consideration of the axial compression of the bristle pack posing a challenge to accurately predict the leakage flow rate at the practical operating condition, the 3D staggered tube bundle model is established based on the multi-block structured mesh. The mesh motion technique is used to obtain the leakage flow pattern and aerodynamic resistance performance of the brush seal. The effects of pressure ratio Rp, sealing clearance c and axial pitch reduction ΔSx,i on leakage flow characteristics as well as Eu of the brush seal were investigated. The numerical results were in good agreement with the experimental data. Thus the accuracy of the presented numerical method was validated. For the contacting brush seal, ΔSx,i has a significant effect on the leakage flow rate reduction. As the ΔSx,i increases from 0 mm to 0.004 mm, the leakage flow rate is reduced by 39.63% when Rp equals to 1.5. For the clearance brush seal, ΔSx,i has little effect on the leakage flow rate reduction. As the ΔSx,i increases from 0 mm to 0.004 mm, the leakage flow rate is reduced by 3.44% when Rp equals to 1.5 and c equals to 0.2 mm. As for the aerodynamic resistance, the presence of the sealing clearance could effectively convert the pressure energy of the leakage flow into kinetic energy. This causes that the leakage flow velocity exiting the bristle pack of the clearance brush seal is 1.5 to 2.0 times than that of the contacting brush seal. Although the existence of the sealing clearance obviously increases the leakage flow rate, it effectively reduces the aerodynamic forces acting on the bristles. This research would provide technical support for the analysis of the leakage flow characteristics of the brush seal.


Author(s):  
Zhigang Li ◽  
Jun Li ◽  
Zhenping Feng

Effects of partition wall type, partition wall number and cavity depth on the leakage and rotordynamic characteristics of the pocket damper seal (PDS) were numerically investigated using a presented 3D transient computational fluid dynamics (CFD) method based on the multifrequency elliptical whirling orbit model. The accuracy and availability of this transient CFD method and the multifrequency elliptical whirling orbit model were demonstrated with the experimental data of the experimental eight-bladed fully partitioned pocket damper seal (FPDS). The leakage flow rates and frequency-dependent rotordynamic coefficients of PDS were computed for two types of partition wall (namely conventional PDS and fully partitioned PDS), four partition wall numbers including the labyrinth seal (no partition wall) and six cavity depths including the plain smooth seal (zero cavity depth) at operational conditions with or without inlet preswirl and 15,000 rpm rotational speed. The numerical results show that the FPDS has the similar leakage performance and more superior stability capacity than the conventional PDS. The FPDS possesses slightly larger leakage flow rate (∼2.6–4.0% larger) compared to the labyrinth seal. Eight is a preferable value for the partition wall number to gain the best leakage performance of the FPDS with the least manufacturing cost. The FPDS possesses significantly larger stiffness and damping than the labyrinth seal. Increasing partition wall number results in a significant increase in the direct stiffness but limited desirable effect on the effective damping. The FPDS possesses the lowest leakage flow rate when the cavity depth is about 2.0 mm. Compared to the plain smooth seal, the FPDS possesses larger positive direct stiffness and significantly less direct damping and effective damping. Increasing cavity depth results in a significant decrease in the stabilizing direct damping and the magnitude of the destabilizing cross-coupling stiffness. H= 3.175 mm is a preferable value of the cavity depth for which the effective damping of the FPDS is largest, especially for the concerned frequencies (80–120 Hz) where most multistage high-pressure centrifugal compressors have stability problem.


Author(s):  
Yuanqiao Zhang ◽  
Jun Li ◽  
Dengqian Ma ◽  
Yuan He ◽  
Jingjin Ji ◽  
...  

Abstract This paper numerically investigates the leakage flow characteristics of two types of HLBSs (bristle pack installed upstream or downstream of helical-labyrinth tooth named as HLBS-U and HLBS-D, respectively) at various pressure ratios (1-1.3) and rotational speeds (0-10000r/min). In parallel, the leakage flow characteristics of the HLBS-D with the constant cb of 1.0 mm are experimentally measured at the pressure ratio up to 1.3 and rotational speed up to 2000 r/min. The effective clearance of the HLBS-U is smaller than that of the HLBS-D in the case of cb=0.5mm and rotational speed n<10000r/min, and the case of cb=1.0mm. However, for the case of cb=0.5mm and n=10000r/min, and the case of cb=0.1mm, the situation is opposite. The brush seal sections of the HLBS-U and the HLBS-D offer over 55% and 65% total static pressure drop in the case of cb=1.0 mm, respectively; The brush seal sections of two HLBSs bear almost the same static pressure drop of the over 97% total static pressure drop as cb equals to 0.1 mm. The HLBS-U has lower turbulent kinetic energy upstream of the bristle pack than the HLBS-D does, which means that intensity of bristles flutter of the HLBS-U is lower. The HLBS-U possesses significantly lower absolute value of aerodynamic forces than the HLBS-D does as cb=1.0 mm.


2021 ◽  
Vol 143 (5) ◽  
Author(s):  
Dengqian Ma ◽  
Zhigang Li ◽  
Jun Li

Abstract The leakage flow characteristics of the variable bristle diameter (VBD) brush seals are numerically investigated using the three-dimensional (3D) tube bundle model with consideration of bristle pack stratification. The discretization of the computational domain applies the multiblock structured mesh, which ensures that there is no need to set interfaces between the fluid domains of the bristle pack and the cavities to eliminate interpolation errors. The bristle pack stratification is achieved by using mesh motion technique from the point of cause-effect. The effects of pressure ratio (Rp=1.5, 2.5, 3.5), axial rows of bristles (Nx=9–21), sealing clearance (c=0, 0.1 mm), bristle pack arrangements, and bristles gapping (gi=0, 0.005, 0.010, 0.015 mm) on the leakage flow characteristics and aerodynamic forces are conducted. The recorded leakage flow of the 3D tube bundle model is multiplied by circumferential loop number (Ncl) to determine total leakage flow rate of the brush seal. The numerical results agreed well with the experimental data, which verifies the reliability of the numerical method. The numerical results indicate that the leakage flow rate increases linearly with the pressure ratio. The increase of Nx has a distinctly different effect on the relative rate of leakage flow for the contacting and clearance brush seals. The use of large diameter bristles weakens the sealing performance of the brush seals, particularly in the rear region. Bristle pack stratification can improve the sealing performance of the brush seals. The large diameter bristles increase the porosity and reduce the flow resistance coefficients. On the contrary, the bristle pack stratification decreases the porosity and rises the flow resistance coefficients in the rear region. The results of this article indicate when designing VBD brush seals, the effects of bristle diameter and bristle density on the sealing performance and pressure loading capacity of the brush seals should be fully considered.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 705
Author(s):  
Seung Il Baek ◽  
Joon Ahn

A straight-through labyrinth seal is one of the most popular non-contacting annular seals through which energy dissipation by turbulence viscosity interaction is achieved with a series of teeth and cavities. The geometric parameters of the straight-through labyrinth seal, such as clearance, tooth width, tooth height, cavity width, and tooth inclination angle, affect its performance. The space for installing a labyrinth seal in turbomachinery is limited, and so it is important to optimize its geometry for a fixed axial length in order to minimize the leakage flow rate and the discharge coefficient. The objective of the current study is to understand the effects of changing the geometric parameters of the seal on the leakage flow rate and the discharge coefficient, and to determine the optimized geometry for a fixed axial length. When the whole axial length is fixed, the most effective way to decrease the discharge coefficient is to reduce the cavity width by increasing the number of cavities. However, if the number of cavities is too high, the beneficial effect of more cavities can be reversed. The results of this study will help turbomachinery manufacturers to design a more efficient labyrinth seal. Numerical simulations of leakage flow for the straight-through labyrinth seal were carried out using Reynolds-Averaged Navier–Stokes (RANS) models, and the results for their discharge coefficients and pressure distributions were compared to previously published experimental data.


Author(s):  
Xiaozhi Kong ◽  
Gaowen Liu ◽  
Yuxin Liu ◽  
Qing Feng

What make the labyrinth seal in a compressor stator well different from the normal labyrinth seal are the inlet and outlet rotor-stator disc cavities. Due to the presence of rotating disc cavities, the windage heating and the swirl development are remarkable, which can have a great influence on the leakage characteristic. Besides, when compressor operates at different speeds, the rotor and stator grow differently owing to centrifugal expansion and thermal expansion. Hence the tip clearance which determines the leakage mass flow changes with the varying of rotational speed and temperature in the stator well. A rotating test rig with rotational speed 8100rpm and pressure ratio range 1.05∼1.3 was designed for the test of labyrinth seal in a compressor stator well. A cantilevered structure was used to entirely collect the mass flow for an accurate measurement. To know the working tip clearance precisely, the set up tip clearance was measured with plug gauges, while the radial displacements of rotating disc and stationary casing were measured separately with two high precision laser distance sensors. The total temperatures of airflow in the stator well were measured with thermocouples to analyze the proportion of windage heating among the inlet rotating disc cavity, outlet rotating disc cavity, and labyrinth seal segment. The disc and stator casing were manufactured with non-metallic materials to reduce heat dissipation. Furthermore, the circumferential velocity of the leakage flow was measured using probes to reveal the swirl development. Two-dimensional, axisymmetric swirl flow numerical simulations were carried out to provide insight into the flow field details, total temperature variation and swirl flow development in the stator well. The numerical results of discharge coefficient, windage heating and swirl ratio were compared with the experimental data. Of particular note is, the tip clearance of numerical model at a specific rotating speed was set to be the same with the actual working clearance which was measured in the experiment. The inlet and outlet parameters corresponded with the experimental conditions also.


Sign in / Sign up

Export Citation Format

Share Document