Investigation on the Leakage Flow, Windage Heating and Swirl Development of Rotating Labyrinth Seal in a Compressor Stator Well

Author(s):  
Xiaozhi Kong ◽  
Gaowen Liu ◽  
Yuxin Liu ◽  
Qing Feng

What make the labyrinth seal in a compressor stator well different from the normal labyrinth seal are the inlet and outlet rotor-stator disc cavities. Due to the presence of rotating disc cavities, the windage heating and the swirl development are remarkable, which can have a great influence on the leakage characteristic. Besides, when compressor operates at different speeds, the rotor and stator grow differently owing to centrifugal expansion and thermal expansion. Hence the tip clearance which determines the leakage mass flow changes with the varying of rotational speed and temperature in the stator well. A rotating test rig with rotational speed 8100rpm and pressure ratio range 1.05∼1.3 was designed for the test of labyrinth seal in a compressor stator well. A cantilevered structure was used to entirely collect the mass flow for an accurate measurement. To know the working tip clearance precisely, the set up tip clearance was measured with plug gauges, while the radial displacements of rotating disc and stationary casing were measured separately with two high precision laser distance sensors. The total temperatures of airflow in the stator well were measured with thermocouples to analyze the proportion of windage heating among the inlet rotating disc cavity, outlet rotating disc cavity, and labyrinth seal segment. The disc and stator casing were manufactured with non-metallic materials to reduce heat dissipation. Furthermore, the circumferential velocity of the leakage flow was measured using probes to reveal the swirl development. Two-dimensional, axisymmetric swirl flow numerical simulations were carried out to provide insight into the flow field details, total temperature variation and swirl flow development in the stator well. The numerical results of discharge coefficient, windage heating and swirl ratio were compared with the experimental data. Of particular note is, the tip clearance of numerical model at a specific rotating speed was set to be the same with the actual working clearance which was measured in the experiment. The inlet and outlet parameters corresponded with the experimental conditions also.

Author(s):  
Luis San Andrés ◽  
Tingcheng Wu ◽  
Jose Barajas-Rivera ◽  
Jiaxin Zhang ◽  
Rimpei Kawashita

Abstract Gas labyrinth seals (LS) restrict secondary flows (leakage) in turbomachinery and their impact on the efficiency and rotordynamic stability of high-pressure compressors and steam turbines can hardly be overstated. Amongst seal types, the interlocking labyrinth seal (ILS), having teeth on both the rotor and on the stator, is able to reduce leakage up to 30% compared to other LSs with either all teeth on the rotor or all teeth on the stator. This paper introduces a revamped facility to test gas seals for their rotordynamic performance and presents measurements of the leakage and cavity pressures in a five teeth ILS. The seal with overall length/diameter L/D = 0.3 and small tip clearance Cr/D = 0.00133 is supplied with air at T = 298 K and increasing inlet pressure Pin = 0.3 MPa ∼ 1.3 MPa, while the exit pressure/inlet pressure ratio PR = Pout/Pin is set to range from 0.3 to 0.8. The rotor speed varies from null to 10 krpm (79 m/s max. surface speed). During the tests, instrumentation records the seal mass flow (ṁ) and static pressure in each cavity. In parallel, a bulk-flow model (BFM) and a computational fluid dynamics (CFD) analysis predict the flow field and deliver the same performance characteristics, namely leakage and cavity pressures. Both measurements and predictions agree closely (within 5%) and demonstrate the seal mass flow rate is independent of rotor speed. A modified flow factor Φ¯=m.T/PinD1-PR2 characterizes best the seal mass flow with a unique magnitude for all pressure conditions, Pin and PR.


Author(s):  
Zhigang Li ◽  
Jun Li ◽  
Xin Yan ◽  
Zhenping Feng

Effects of pressure ratio and rotational speed on the leakage flow and cavity pressure characteristics of the rotating staggered labyrinth seal were investigated by means of experimental measurements and numerical simulations. The rotating seal test rig with turbine flowmeter and pressure measuring instruments was utilized to investigate the leakage flow of the staggered labyrinth seal at eight pressure ratios and five rotational speeds. The repeatability of the experimental data was demonstrated by three times measurements at different pressure ratios and fixed rotational speed. The three-dimensional Reynolds-averaged Navier–Stokes equations and standard k-ε turbulent model were also applied to study the leakage flow characteristics of the staggered labyrinth seal at the experimental conditions. The validation of the numerical approach was verified through comparison of the experimental data. The detailed flow field in the staggered labyrinth seal was illustrated according to the numerical simulations. The experimental and numerical results show that the leakage flow coefficient increases with increasing pressure ratio at the fixed rotational speed and is more sensitive to the smaller pressure ratio. The influence of rotational speed on the leakage flow coefficient is not obvious in the present rotational speed limitations. The cavity pressure coefficient in the staggered labyrinth seal decreases and is significantly influenced by the cavity structure along the flow direction.


Author(s):  
Xiaozhi Kong ◽  
Gaowen Liu ◽  
Yuxin Liu ◽  
Zhao Lei ◽  
Longxi Zheng

Labyrinth seals are normally used to control the leakage flow in the compressor stator well. The upstream and downstream rotor-stator cavities of the labyrinth seal can cause complex reverse leakage flows. Remarkable temperature increases and high swirl velocities are observed in this region. In addition, another characteristic of inter-stage labyrinth seal is that large expansions of rotor and stator may easily lead to severely rubbing between the teeth and shrouds, which can shorten the lifetime of the compressor obviously. Experiments were conducted at a rotating compressor inter-stage seal test facility. Different labyrinth rings were tested to compare the performances of inter-stage labyrinth seals with different tooth positions. Leakage flow rates, windage heating and swirl ratios in the outlet cavity were measured at different rotating speeds and pressure ratios. In order to get the working tip clearance accurately, the set up tip clearance was measured with plug gauges, while the radial displacements of rotating disc and stationary casing were measured separately with two high precision laser distance sensors. Numerical simulations were carried out to present the important flow physics responsible for the effects of different tooth positions. In this article, performances of different cases for single, double and triple teeth were investigated and the experimental data provide a new way for the design of inter-stage seals. This method can reduce the leakage flow and avoid severely rubbing at the same time by changing axial positions of teeth in the stator well. When teeth are placed downstream of the model and the tooth pitch is larger, the inter-stage seal would have better sealing performance. For triple teeth cases, N = 3-Case1 has the lowest discharge coefficients, 15% less than that of N = 3-Baseline.


Author(s):  
Xinqian Zheng ◽  
Heli Yang

Tip clearance has great influence on the performance of multistage axial compressors including efficiency, pressure rise, mass flow, as well as matching. This paper reports a study into the influence of tip clearance on the performance and matching of a 5-stage axial compressor by a numerical method. Different tip clearances from 0% to 5.0% span which represents the typical range of tip clearance in modern multistage axial compressors were simulated and analyzed. The results show that as tip clearance increases from 0% to 5.0% span, the choked mass flow decreases by about 21.8%, the peak pressure ratio decreases by about 43.1% and the peak efficiency decreases about 14.3 percents. As tip clearance increases, the efficiency of the whole compressor decreases in a parabolic manner not linearly as previous suggested, which is partially attributable to the cantilevered stators considered in this paper and primarily due to the mismatching of different stages. It is of great importance to control the tip clearance. When tip clearance increases, the front stage tends to work near surge condition and the rear stage tends to work near choke condition, which leads to lower efficiency than in the middle stages. A weight was defined to evaluate each stage’s contribution to the whole compressor’s efficiency deficit caused by the increase of tip clearance. Front and rear stages contribute more to the efficiency deficit than the middle stages, which indicates that more attention should be paid on front and rear stages to improve the performance of multistage axial compressors. In order to evaluate the matching of multistage axial compressors with a quantified method, a new parameter named “Peak Efficiency Deviation (PED)” was defined based on the difference between each stage’s operating efficiency and its peak efficiency. The mass flow of multistage axial compressors should be well considered to make the PED parameter to be close to zero as possible. In the most commonly used range of tip clearance from 0.5% to 3.0% span, the PED varies little within 0.4 percent, which is only about 8.4% of the peak efficiency deficit at 1.5% span tip clearance. So, the PED could be small within a wide range of tip clearances if the matching of the compressor is perfect at design tip clearance.


Author(s):  
Victor Mileshin ◽  
Igor Brailko ◽  
Andrew Startsev

Widening of surge margin of a transonic compressor stage is the main objective of the paper. This stage is a typical middle stage of a modern high pressure compressor (HPC) with decreased number of stages. Hot tip clearance of the stage being integrated into a six-stage HPC providing total pressure ratio π* HPC ≥ 12 and mass flow-rate < 16 kg/sec is estimated at 2.5 – 3% of blade height and is classified as a large tip clearance. In this paper experimental and 3D viscous numerical performances of the stage are obtained for two values of rotor tip clearance — equal to 0.76% (small size) and 2.66% (large size) of blade height. In doing so, tip clearance enlargement from 0.76% to 2.66% has been made by increase of casing (shroud) radius. This increase is manufactured as a circumferential trench (recess) with axial width 30% larger than rotor axial chord. Below this tip clearance is called “recessed” tip clearance. A distinguishing feature of leakage flow in case of large tip clearance is a formation of reversed flow near rotor casing. This backflow being intensified by throttling causes increase of incidence at the rotor leading edge and development of rotor stall. Casing treatments are intended to inhibit and delay the process. Among them circumferential grooves is the simplest casing treatment. Investigated in this paper casing circumferential grooves cover 82% of rotor axial chord. Numerical visualization of the near-casing streamlines demonstrates that tip leakage flow drains into the casing grooves giving rise to extended domains of positive axial velocity. Calculated mass flow-rate through groove’s cross-section demonstrates maximum over the rotor blade tip (flow into the groove) and minimum at mid-pitch (flow out of the groove). Amplitude of this variation depends on the groove location and stage throttling.


Author(s):  
Zhigang Li ◽  
Jun Li ◽  
Zhenping Feng ◽  
Jiandao Yang ◽  
Rui Yang ◽  
...  

The effects of pressure ratios, rotational speeds and sealing clearances on the leakage flow characteristics of pocket damper seals (PDS) were numerically investigated using Reynolds-Averaged Navier-Stokes (RANS) solutions. The leakage flow rate of the experimental PDS with the eight-bladed and eight-pocket was conducted at three different pressure drops and three different rotational speeds. The numerical results were in agreement with the experimental data. Six pressure ratios, four rotational speeds and four sealing clearances were utilized to study the effects of theses factors on the leakage flow characteristics of the PDS. Numerical results show that the leakage rate of the PDS increases with decreased pressure ratio. The leakage rate decreases with the increasing rotational speed, and this phenomenon is more pronounced at higher rotational speed. At the highest rotational speed 20200rpm, the flow coefficient is up to 4.4% less than that of the non-rotating case. The leakage rate increases linearly with sealing clearance increasing. The comparison of the leakage flow rate shows that the PDS leaks slightly less than that of the labyrinth seal at the same pressure ratio, rotational speed and sealing clearance, especially at the higher rotational speed case. Furthermore, the circumferential partition wall can significantly decrease the circumferential flow in the PDS cavity. At the highest rotational speed with 20200rpm, the swirl ratio in the active and inactive cavity of the PDS is reduced by 94.5% and 46% compared to the labyrinth seal, respectively.


2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Luis San Andrés ◽  
Tingcheng Wu ◽  
Jose Barajas-Rivera ◽  
Jiaxin Zhang ◽  
Rimpei Kawashita

Gas labyrinth seals (LS) restrict secondary flows (leakage) in turbomachinery and their impact on the efficiency and rotordynamic stability of high-pressure compressors and steam turbines can hardly be overstated. Among seal types, the interlocking labyrinth seal (ILS), having teeth on both the rotor and the stator, is able to reduce leakage up to 30% compared to other LSs with either all teeth on the rotor (TOR) or all teeth on the stator. This paper introduces a revamped facility to test gas seals for their rotordynamic performance and presents measurements of the leakage and cavity pressures in a five teeth ILS. The seal with overall length/diameter L/D = 0.3 and small tip clearance Cr/D = 0.00133 is supplied with air at T = 298 K and increasing inlet pressure Pin = 0.3–1.3 MPa, while the exit pressure/inlet pressure ratio PR = Pout/Pin is set to range from 0.3 to 0.8. The rotor speed varies from null to 10 krpm (79 m/s max. surface speed). During the tests, instrumentation records the seal mass flow (m˙) and static pressure in each cavity. In parallel, a bulk-flow model (BFM) and a computational fluid dynamics (CFD) analysis predict the flow field and deliver the same performance characteristics, namely leakage and cavity pressures. Both measurements and predictions agree closely (within 5%) and demonstrate that the seal mass flow rate is independent of rotor speed. A modified flow factor Φ¯=m˙T/(PinD1−PR2) characterizes best the seal mass flow with a unique magnitude for all pressure conditions, Pin and PR.


2019 ◽  
Vol 91 (8) ◽  
pp. 1077-1085 ◽  
Author(s):  
Filip Wasilczuk ◽  
Pawel Flaszynski ◽  
Piotr Kaczynski ◽  
Ryszard Szwaba ◽  
Piotr Doerffer ◽  
...  

Purpose The purpose of the study is to measure the mass flow in the flow through the labyrinth seal of the gas turbine and compare it to the results of numerical simulation. Moreover the capability of two turbulence models to reflect the phenomenon will be assessed. The studied case will later be used as a reference case for the new, original design of flow control method to limit the leakage flow through the labyrinth seal. Design/methodology/approach Experimental measurements were conducted, measuring the mass flow and the pressure in the model of the labyrinth seal. It was compared to the results of numerical simulation performed in ANSYS/Fluent commercial code for the same geometry. Findings The precise machining of parts was identified as crucial for obtaining correct results in the experiment. The model characteristics were documented, allowing for its future use as the reference case for testing the new labyrinth seal geometry. Experimentally validated numerical model of the flow in the labyrinth seal was developed. Research limitations/implications The research studies the basic case, future research on the case with a new labyrinth seal geometry is planned. Research is conducted on simplified case without rotation and the impact of the turbine main channel. Practical implications Importance of machining accuracy up to 0.01 mm was found to be important for measuring leakage in small gaps and decision making on the optimal configuration selection. Originality/value The research is an important step in the development of original modification of the labyrinth seal, resulting in leakage reduction, by serving as a reference case.


Author(s):  
Botao Zhang ◽  
Bo Liu ◽  
Xin Sun ◽  
Hang Zhao

Abstract In order to explore the similarities and differences between the flow fields of cantilever stator and idealized compressor cascade with tip clearance, and to extend the cascade leakage model to compressors, the influence of stator hub rotation to represent cascade and cantilever stator on hub leakage flow was numerically studied. On this basis, the control strategy and mechanism of blade root suction were discussed. The results show that there is no obvious influence on stall margin of the compressor whether the stator hub is rotating or stationary. For rotating stator hub, the overall efficiency is decreased while the total pressure ratio is increased. At peak efficiency point and near stall point, the efficiency is reduced by about 0.43% and 0.34% individually, while the total pressure ratio is enlarged by about 0.23% and 0.27%, respectively. The gap leakage flow is promoted due to stator hub rotation, and the structure of the leakage vortex is weakened obviously. In addition, the hub leakage flow originating from the blade leading edge of rotating hub may contribute to double leakage near the trailing edge of the adjacent blade. However, the leakage flow directly out of the blade passage with stationary stator hub. The stator root loading and strength of the leakage flow increase with the rotation of the hub, and the leakage vortex is further away from the suction surface of the blade and is stretched to an ellipse closer to the endwall under the shear action. The rotating hub makes the flow loss near the stator gap increase, while the flow loss in the upper part of the blade root is decreased. Meanwhile, the total pressure ratio in the end area is increased. Blade root suction of cantilever stator can effectively control the hub leakage flow, inhibit the development of hub leakage vortex, and improve the flow capacity of the passage, thereby reducing the flow loss and modifying the flow field in the end zone.


2021 ◽  
Author(s):  
Tianhao Wang ◽  
Zhigang Li ◽  
Jun Li

Abstract Labyrinth seals are widely applied in the turbomachinery to control the leakage flow through the clearance between the stationary and rotating components. The fluid excitation induced by the labyrinth seal would deteriorate the stability of turbomachinery shaft. Developing an accurate and rapid prediction approach is crucial for the analysis of the fluid excitation rotordynamics of the labyrinth seal. The objective of this study is to analyze the applicability of leakage models using Bulk-Flow method and investigate the factors affecting the rotordynamic characteristics of the labyrinth seal. An elliptical orbit for rotor whirling was assumed in the one-control-volume Bulk-Flow model considering an isentropic process to predict the frequency-dependent rotordynamic coefficients of the labyrinth seal. The optimal leakage model was determined by comprehensively analyzing the applicability of 72 leakage models. Employing the optimal leakage model in the Bulk-Flow method, the effects of sealing clearance, pressure ratio, preswirl ratio and rotational speed on the rotordynamic characteristics of the labyrinth seal were investigated. The conclusions show that the Bulk-Flow method has an average prediction error of around 10% for the leakage flow rate, cross-coupled stiffness and direct damping when equipped with the optimal leakage model. Increasing preswirl ratio has a significantly destabilizing effect on the rotor stability, while the influence of increasing rotational speed is strongly related to preswirl direction. The effective damping of the labyrinth seal is sensitive to the inlet pressure, but insensitive to the outlet pressure and sealing clearance. The crossover frequency is almost impervious to the inlet pressure, outlet pressure and sealing clearance.


Sign in / Sign up

Export Citation Format

Share Document