Experimental and Numerical Analysis of High Temperature Gas Turbine Nozzle Vane Convective and Film Cooling Effectiveness

Author(s):  
Victoria Krivonosova ◽  
Alexander Lebedev ◽  
Nicolay Simin ◽  
Michael Zolotogorov ◽  
Nicolay Kortikov

This paper presents the results of experimental and numerical investigations of cooling effectiveness of the film cooled turbine nozzle. The nozzle is with two internal cavities. Front cavity of the nozzle is fed with high pressure cooling air from compressor diffuser with minimal losses of pressure for ensuring film cooling of the leading edge. Rear cavity is with impingement tube for high effective convective cooling. Experimental measurements of cooling flow capacity and cooling effectiveness were carried out on experimental facility of OSC “NPO CKTI”. Investigations included isothermal internal flow tests and hot tests with internal flow and metal temperature measurements. Test results were compared with flow and thermal field CFD predictions. Temperature fields of body and platforms of nozzle were predicted by conjugate heat transfer simulation. Computation domain includes vane-to-vane path flow, vane solid body with shrouds and holes for cooling air injection. Heat transfer conditions inside vane were calculated with one dimension internal flow model. Isothermal internal flow test results were used to validate one dimension internal flow model. Comparison of the experimental and simulation results enabled to modify calculation models to obtain good agreement. Turbine vane temperature fields calculations in different operation conditions were carried out with validated numerical models.

Author(s):  
Kam S. Chana ◽  
Mary A. Hilditch ◽  
James Anderson

Cooling is required to enable the turbine components to survive and have acceptable life in the very high gas temperatures occurring in modern engines. The cooling air is bled from the compression system, with typically about 15% of the core flow being diverted in military engines and about 20% in civil turbofans. Cooling benefits engine specific thrust and efficiency by allowing higher cycle temperatures to be employed, but the bleed air imposes cycle penalties and also reduces the aerodynamic efficiency of the turbine blading, typically by 2–4%. Cooling research aims to develop and validate improved design methodologies that give maximum cooling effectiveness for minimum cooling flow. This paper documents external cooling research undertaken in the Isentropic Light Piston Facility at QinetiQ as part of a European collaborative programme on turbine aerodynamics and heat transfer. In Phase I, neither the ngv nor the rotor was cooled; cooling was added to the ngv only for Phase II, and to the rotor and ngv in Phase III. Coolant blowing rates and density ratios were also varied in the experiments. This paper describes the ILPF and summarises the results of this systematic programme, paying particular attention to the variation in aerofoil heat transfer with changing coolant conditions, and the effects coolant ejection has on the aerofoil’s aerodynamic performance.


Author(s):  
Karsten Kusterer ◽  
Nurettin Tekin ◽  
Tobias Wüllner ◽  
Dieter Bohn ◽  
Takao Sugimoto ◽  
...  

In modern gas turbines, the film cooling technology is essential for the protection of the hot parts, in particular of the first stage vanes and blades of the turbine, against the hot gases from the combustion process in order to reach an acceptable life span of the components. As the cooling air is usually extracted from the compressor, the reduction of the cooling effort would directly result in increased thermal efficiency of the gas turbine. Understanding of the fundamental physics of film cooling is necessary for the improvement of the state-of-the-art. Thus, huge research efforts by industry as well as research organizations have been undertaken to establish high efficient film cooling technologies. Today it is common knowledge that film cooling effectiveness degradation is caused by secondary flows inside the cooling jets, i.e. the Counter-Rotating Vortices (CRV) or sometimes also called kidney-vortices, which induce a lift-off of the jet. Further understanding of the secondary flow development inside the jet and how this could be influenced, has led to hole configurations, which can induce Anti-Counter-Rotating Vortices (ACRV) in the cooling jets. As a result, the cooling air remains close to the wall and is additionally distributed flatly along the surface. Beside different other technologies, the NEKOMIMI cooling technology is a promising approach to establish the desired ACRVs. It consists of a combination of two holes in just one configuration so that the air is distributed mainly on two cooling air streaks following the special shape of the generated geometry. The NEKOMIMI configuration and two conventional cooling hole configurations (cylindrical and shaped holes) has been investigated numerically under adiabatic and conjugate heat transfer conditions. The influence of the conjugate heat transfer on the secondary flow structure has been analysed. In conjugate heat transfer calculations, it cannot directly derived from the surface temperature distribution if the reached cooling effectiveness values are due to the improved hole configuration with improved secondary flow structure or due to the heat conduction in the material. Therefore, a methodology has been developed, to distinguish between cooling effectiveness due to heat conduction in the material and film cooling flow over the surface. The numerical results shows that for the NEKOMIMI configuration, 77% of the reached overall cooling effectiveness is due to film cooling with improved flow structure in the secondary flow (ACRV) and 23% due to heat conduction in the material. For the cylindrical hole configuration, 10% of the reached overall cooling effectiveness is due to the film cooling flow structure and 90% due to heat conduction in the material.


Author(s):  
Kristofer M. Womack ◽  
Ralph J. Volino ◽  
Michael P. Schultz

Pulsed film cooling jets subject to periodic wakes were studied experimentally. The wakes were generated with a spoked wheel upstream of a flat plate. Cases with a single row of cylindrical film cooling holes inclined at 35 degrees to the surface were considered at blowing ratios, B, of 0.50, and 1.0 with jet pulsing and wake Strouhal numbers of 0.15, 0.30, and 0.60. Wake timing was varied with respect to the pulsing. Temperature measurements were made using an infrared camera, thermocouples, and constant current (cold wire) anemometry. The local film cooling effectiveness and heat transfer coefficient were determined from the measured temperatures. Phase locked flow temperature fields were determined from cold wire surveys. With B = 0.5, wakes and pulsing both lead to a reduction in film cooling effectiveness, and the reduction is larger when wakes and pulsing are combined. With B = 1.0, pulsing again causes a reduction in effectiveness, but wakes tend to counteract this effect somewhat by reducing jet liftoff. At low Strouhal numbers, wake timing had a significant effect on the instantaneous film cooling effectiveness, but wakes in general had very little effect on the time averaged effectiveness. At high Strouhal numbers, the wake effect was stronger, but the wake timing was less important. Wakes increased the heat transfer coefficient strongly and similarly in cases with and without film cooling, regardless of wake timing. Heat transfer coefficient ratios, like the time averaged film cooling effectiveness, did not depend strongly on wake timing for the cases considered.


Author(s):  
Lei Li ◽  
Honglin Li ◽  
Wenjing Gao ◽  
Fujuan Tong ◽  
Zhonghao Tang

Abstract The laminated cooling configuration can effectively enhance heat transfer and improve cooling effectiveness through combining the advantage of impingement cooling, film cooling and pin fin cooling. In this study, four laminated configurations with different pin shape including circular pin shape, curved rib pin shape, droplet pin shape and reverse droplet pin shape are numerically investigated. Extensive analysis are conducted within the blowing ratio range of 0.2–1.8 to reveal the influence of pin shape on heat transfer characteristics and cooling performance. Compared with circular pin shape, other three pin shapes can enable more complex internal flow field, which greatly affect the heat transfer performance. Among these shapes, the droplet pin shape presents the best capacity on improving heat transfer performance and distribution due to its stramlined shape and little upstream surface, especially at relatively high blowing ratio and the augmentation can be up to 7.91% under the blowing ratio of 1.7. Besides, results show that the cooling effectiveness can be enhanced by adopting curved rib pin shape and the enhancement monotonously increases as the blowing ratio increases. When blowing ratio is 1.7, the improvement can be 2.7%. The reason is that the large lateral blockage decreases the exhausted velocity and hence forms relative firm film coverage.


2021 ◽  
Author(s):  
Thanapat Chotroongruang ◽  
Prasert Prapamonthon ◽  
Rungsimun Thongdee ◽  
Thanapat Thongmuenwaiyathon ◽  
Zhenxu Sun ◽  
...  

Abstract Based on the Brayton cycle for gas-turbine engines, the high thermal efficiency and power output of a gas-turbine engine can be obtainable when the gas-turbine engine operates at high turbine inlet temperatures. However, turbine components e.g., inlet guide vane, rotor blade, and stator vane request high cooling performance. Typically, internal cooling and film cooling are two effective techniques that are widely used to protect high thermal loads for the turbine components in a state-of-the-art gas turbine. Consequently, the high thermal efficiency and power output can be obtained, and the turbine lifespan can be prolonged, also. On top of that, a comprehensive understanding of flow and heat transfer phenomena in the turbine components is very important. As a result, both experiments and simulations have been used to improve the cooling performance of the turbine components. In fact, the cooling air used in the internal cooling and film cooling is partially extracted from the compressor. Therefore, variations in the cooling air affect the cooling performance of the turbine components directly. This paper presents a numerical study on the influence of the cooling air on cooling-performance sensitivity of an internally convective turbine vane, MARK II using the computational fluid dynamics (CFD)/conjugate heat transfer (CHT) with the SST k-ω turbulence model. Result comparisons are conducted in terms of pressure, temperature, and cooling effectiveness under the effects of the inlet temperature, mass flow rate, turbulence intensity, and flow direction of the cooling air. The cooling-performance sensitivity to the coolant parameters is shown through variations of local cooling effectiveness, and area and volume-weighted average cooling effectiveness.


Author(s):  
D. H. Zhang ◽  
M. Zeng ◽  
Q. W. Wang

The film cooling phenomenon of flat tip (with or without a trench) and squealer tip on GE-E3 blade in rotating state was numerically studied. The effect of tip configuration, rotating speed and blowing ratio on the blade tip flow and cooling performance was revealed. It was found that the squealer tip and the flat tip with trenched hole have comparability in configuration: both have a cavity at the end of the film hole. So the coolant momentum and the tip leakage flow velocity in the cavity are decreased, which contributes to the improvement of the cooling effect. Because of the bigger cavity of the squealer tip than that of the flat tip with trenched hole, the cooling air and the leakage flow mix adequately in the cavity, the squealer tip can get the highest cooling effectiveness and the lowest heat transfer coefficient value both in stationary and rotating state, and the flat tip with trenched hole follows. With the increase of rotating speed, for all the three configurations, the area-averaged cooling effectiveness decreases and the area-averaged heat transfer coefficient increases. At the same time, the tip leakage flow entraps the cooling air moving toward the leading edge. And with the increase of the blowing ratio, for all the configurations, the area-averaged cooling effectiveness increases while the area-averaged heat transfer coefficients decreases.


Author(s):  
Mahmood Silieti ◽  
Eduardo Divo ◽  
Alain J. Kassab

This paper documents a computational investigation of the film-cooling effectiveness of a 3-D gas turbine endwall with one cylindrical cooling hole. The simulations were performed for an adiabatic and conjugate heat transfer models. Turbulence closure was investigated using five different turbulence models; the standard k-ε model, the RNG k-ε model, the realizable k-ε model, the standard k-ε model, as well as the SST k-ω model. Results were obtained for a blowing ratio of 2.0, and a coolant-to-mainflow temperature ratio of 0.54. The simulations used a dense, high quality, O-type, hexahedral grid. The computed flow/temperature fields are presented, in addition to local, two-dimensional distribution of film cooling effectiveness for the adiabatic and conjugate cases. Results are compared to experimental data in terms of centerline film cooling effectiveness downstream cooling-hole, the predictions with realizable k-ε turbulence model exhibited the best agreement especially in the region for (x/D ≤ 6). All turbulence models predicted the jet lift-off. Also, the results show the effect of the conjugate heat transfer on the temperature (effectiveness) field in the film-cooling hole region and, thus, the additional heating up of the cooling jet itself.


Author(s):  
H. I. Oguntade ◽  
G. E. Andrews ◽  
A. D. Burns ◽  
D. B. Ingham ◽  
M. Pourkashanian

The influence of the application of a filleted shape trench hole outlet on the overall cooling effectiveness of a flat hot effusion Nimonic 75 metal wall with a 770K hot gas crossflow was investigated using conjugate heat transfer (CHT) CFD and the Ansys Fluent code. The baseline effusion wall had ten rows of holes with an X/D of 4.65 and a wall thickness of 6.35mm with normal injection holes. This was modelled and showed good agreement with the experimental results for overall cooling effectiveness. The aim of the work was to use these validated CHT CFD procedures to investigate improved hole outlet designs with 30° inclined effusion of X/D = 4.65 with improved hole outlet designs using various trench designs. The predictions involved the use of a gas tracer in the cooling air to simultaneously separate the predicted adiabatic film cooling effectiveness from the overall cooling effectiveness. The shaped trench outlet effusion wall designs were predicted to have a superior performance compared with the 90° effusion wall cooling design. This was due to the improved adiabatic film cooling. An increase in the trailing edge vertical wall depth of the trenched effusion wall design from 0.5D to 0.75D increased the overall and adiabatic cooling effectiveness. The filleted shaped trench outlet effusion wall only required a small amount of cooling air to achieve a satisfactory cooling performance. It was predicted that this new effusion wall design could enable a significant reduction in the coolant mass flow for cooled metal surfaces in in future high performance gas turbines.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Kristofer M. Womack ◽  
Ralph J. Volino ◽  
Michael P. Schultz

Pulsed film cooling jets subject to periodic wakes were studied experimentally. The wakes were generated with a spoked wheel upstream of a flat plate. Cases with a single row of cylindrical film cooling holes inclined at 35deg to the surface were considered at blowing ratios B of 0.50 and 1.0 with jet pulsing and wake Strouhal numbers of 0.15, 0.30, and 0.60. Wake timing was varied with respect to the pulsing. Temperature measurements were made using an infrared camera, thermocouples, and constant current (cold wire) anemometry. The local film cooling effectiveness and heat transfer coefficient were determined from the measured temperatures. Phase locked flow temperature fields were determined from cold-wire surveys. With B=0.5, wakes and pulsing both lead to a reduction in film cooling effectiveness, and the reduction is larger when wakes and pulsing are combined. With B=1.0, pulsing again causes a reduction in effectiveness, but wakes tend to counteract this effect somewhat by reducing jet lift-off. At low Strouhal numbers, wake timing had a significant effect on the instantaneous film cooling effectiveness, but wakes in general had very little effect on the time averaged effectiveness. At high Strouhal numbers, the wake effect was stronger, but the wake timing was less important. Wakes increased the heat transfer coefficient strongly and similarly in cases with and without film cooling, regardless of wake timing. Heat transfer coefficient ratios, similar to the time averaged film cooling effectiveness, did not depend strongly on wake timing for the cases considered.


Author(s):  
Mahmood Silieti ◽  
Alain J. Kassab ◽  
Eduardo Divo

This paper documents a computational investigation of the film cooling effectiveness of a 3-D gas turbine endwall with one fan-shaped cooling hole. The simulations were performed for adiabatic and conjugate heat transfer models. Turbulence closure was investigated using three different turbulence models; the realizable k-ε model, the SST k-ω model, as well as the v2–f turbulence model. Results were obtained for a blowing ratio of one, and a coolant-to-mainflow temperature ratio of 0.54. The simulations used a dense, high quality, O-type, hexahedral grid with three different schemes of meshing for the cooling hole: hexahedral-, hybrid-, and tetrahedral-topology grid. The computed flow/temperature fields are presented, in addition to local, two-dimensional distribution of film cooling effectiveness for the adiabatic and conjugate cases. Results are compared to experimental data in terms of centerline film cooling effectiveness downstream cooling-hole, the predictions with realizable k-ε turbulence model exhibited the best agreement especially in the region for (2 ≤ x/D ≤ 6). Also, the results show the effect of the conjugate heat transfer on the temperature (effectiveness) field in the film cooling hole region and, thus, the additional heating up of the cooling jet itself.


Sign in / Sign up

Export Citation Format

Share Document