Experimental and Numerical Analyses of Radial Turbine Blisks With Regard to Mistuning

Author(s):  
Peter Ho¨nisch ◽  
Arnold Ku¨hhorn ◽  
Bernd Beirow

The effect of blade frequency mistuning on the forced response of integral radial turbines is studied by means of experimental and numerical analyses. Blade dominated frequencies representing the mistuning are identified based on blade by blade measurements using the example of a MTU ZR140 turbine blisk. Based on these results, numerical simulations of the blade by blade measurements are performed, aiming to update the originally ideal (tuned) finite element model. The damping information to be considered in the update process is taken from results of an experimental modal analysis. The quality of the model is proved by well correlated frequency response functions (FRF) of numerical and experimental analyses. Finally, the models are used to simulate the forced response due to travelling wave excitations. As a result, mode localization phenomena and response amplifications compared to tuned blisks are proved. In order to round off the contribution to a more enhanced understanding of the radial turbine blisk dynamics optically based geometry measurements are performed to assess the influence of geometrical deviations on frequency mistuning. It is shown that geometric imperfections can be the main driver causing a mistuned response characteristic.

2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Joseph A. Beck ◽  
Jeffrey M. Brown ◽  
Alex A. Kaszynski ◽  
Emily B. Carper ◽  
Daniel L. Gillaugh

AbstractIntegrally bladed rotors (IBRs) are meant to be rotationally periodic structures. However, unique variations in geometries and material properties from sector-to-sector, called mistuning, destroy the structural periodicity. This results in mode localization that can induce forced response levels greater than what is predicted with a tuned analysis. Furthermore, mistuning and mode localization are random processes that require stochastic treatments when analyzing the distribution of fleet responses. Generating this distribution can be computationally intensive when using the full finite element model (FEM). To overcome this expense, reduced-order models (ROMs) have been developed to accommodate fast calculations of mistuned forced response levels for a fleet of random IBRs. Usually, ROMs can be classified by two main families: frequency-based and geometry-based methods. Frequency-based ROMs assume mode shapes do not change due to mistuning. However, this assumption has been shown to cause errors that propagate to the fleet distribution. To circumvent these errors, geometry-based ROMs have been developed to provide accurate predictions. However, these methods require recalculating modal data during ROM formulations. This increases the computational expense in computing fleet distributions. A new geometry-based ROM is presented to reduce this cost. The developed ROM utilizes a Bayesian surrogate model in place of sector modal calculations required in ROM formulations. The method, surrogate modal analysis for geometry mistuning assessments (SMAGMA), will propagate uncertainties of the surrogate prediction to forced response. ROM accuracies are compared to the true forced response levels and results computed by a frequency-based ROM.


Author(s):  
Bernd Beirow ◽  
Arnold Kühhorn ◽  
Thomas Giersch ◽  
Jens Nipkau

The forced response of an E3E-type HPC-blisk front rotor is analyzed with regard to varying mistuning and the consideration of the fluid-structure interaction (FSI). For that purpose, a reduced order model is used in which the disk remains unchanged and mechanical properties of the blades namely stiffness and damping are adjusted to measured as well as intentional blade frequency mistuning distributions. The aerodynamic influence coefficient technique is employed to model the aeroelastics. Depending on the blade mode, the exciting engine order and aerodynamic influences it is sought for the worst mistuning distributions with respect to the maximum blade displacement based on optimization analyses. Genetic algorithms using blade alone frequencies as design variables are applied. The validity of the Whitehead-limit is assessed in this context. In particular, the question is addressed if and how far aeroelastic effects, mainly caused by aerodynamic damping, combined with mistuning can even cause a reduction of the forced response compared to the ideally tuned blisk. It is shown that the strong dependence of the aerodynamic damping on the inter-blade phase angle is the main driver for a possible response attenuation considering the fundamental as well as a higher blade mode. Furthermore, the differences to the blisk vibration response without a consideration of the flow and an increase of the disk’s stiffness are discussed. Closing, the influence of pure damping mistuning is analyzed again using optimization.


Author(s):  
Joseph A. Beck ◽  
Jeffrey M. Brown ◽  
Alex A. Kaszynski ◽  
Emily B. Carper ◽  
Daniel L. Gillaugh

Abstract By design, Integrally Bladed Rotors (IBRs) are meant to be tuned, rotationally periodic structures. However, unique variations in geometries and material properties from sector-to-sector, referred to as mistuning, destroy the structural periodicity. This results in mode localization that can induce forced response levels greater than what is predicted with a tuned-structure analysis. Furthermore, mistuning and mode localization are random processes that require stochastic treatments when analyzing the distribution of fleet responses. Generating this distribution can be computationally intensive when using the full finite element model. To overcome this expense, Reduced Order Models (ROMs) have been developed to accommodate fast calculations of mistuned forced response levels for a fleet of random IBRs. Usually, ROMs can be classified by two main families: frequency-based and geometry-based methods. Frequency-based ROMs assume mode shapes do not change due to mistuning. However, this assumption has been shown to cause errors that propagate to the fleet distribution. To circumvent these errors, geometry-based ROMs have been developed to provide accurate predictions. However, these methods require recalculating modal data during ROM formulations. This increases the computational expense in computing fleet distributions. A new geometry-based ROM is presented to reduce this cost. The developed ROM utilizes a Bayesian surrogate model in place of sector modal calculations required in ROM formulations. This method, referred to as the Surrogate Modal Analysis for Geometry Mistuning Assessments (SMAGMA), will propagate the uncertainties of the surrogate prediction to the forced response. Assessments of the ROM accuracy are made by comparing results to the true forced response levels and results computed by a frequency-based ROM.


Author(s):  
Bernd Beirow ◽  
Thomas Giersch ◽  
Arnold Kühhorn ◽  
Jens Nipkau

The forced response of an E3E-type high pressure compressor (HPC) blisk front rotor is analyzed with regard to varying mistuning and the consideration of the fluid-structure interaction (FSI). For that purpose, a reduced order model is used in which the disk remains unchanged and mechanical properties of the blades, namely stiffness and damping, are adjusted to measured as well as intentional blade frequency mistuning distributions. The aerodynamic influence coefficient technique is employed to model the aeroelastics. Depending on the blade mode, the exciting engine order, and aerodynamic influences, it is sought for the worst mistuning distributions with respect to the maximum blade displacement based on optimization analyses. Genetic algorithms using blade-alone frequencies as design variables are applied. The validity of the Whitehead limit is assessed in this context. In particular, the question is addressed if and how far aeroelastic effects, mainly caused by aerodynamic damping, combined with mistuning can even cause a reduction of the forced response compared to the ideally tuned blisk. It is shown that the strong dependence of the aerodynamic damping on the interblade phase angle is the main driver for a possible response attenuation considering the fundamental as well as a higher blade mode. Furthermore, the differences to the blisk vibration response without a consideration of the flow and an increase of the disk's stiffness are discussed. Closing, the influence of pure damping mistuning is analyzed again using optimization.


Author(s):  
Alex Nakos ◽  
Bernd Beirow ◽  
Arthur Zobel

Abstract The radial turbine impeller of an exhaust turbocharger is analyzed in view of both free vibration and forced response. Due to random blade mistuning resulting from unavoidable inaccuracies in manufacture or material inhomogeneities, localized modes of vibration may arise, which involve the risk of severely magnified blade displacements and inadmissibly high stress levels compared to the tuned counterpart. Contrary, the use of intentional mistuning (IM) has proved to be an efficient measure to mitigate the forced response. Independently, the presence of aerodynamic damping is significant with respect to limit the forced response since structural damping ratios of integrally bladed rotors typically take extremely low values. Hence, a detailed knowledge of respective damping ratios would be desirable while developing a robust rotor design. For this, far-reaching experimental investigations are carried out to determine the damping of a comparative wheel within a wide pressure range by simulating operation conditions in a pressure tank. Reduced order models are built up for designing suitable intentional mistuning patterns by using the subset of nominal system modes (SNM) approach introduced by Yang and Griffin [1], which conveniently allows for accounting both differing mistuning patterns and the impact of aeroelastic interaction by means of aerodynamic influence coefficients (AIC). Further, finite element analyses are carried out in order to identify appropriate measures how to implement intentional mistuning patterns, which are featuring only two different blade designs. In detail, the impact of specific geometric modifications on blade natural frequencies is investigated.


Author(s):  
Johann Gross ◽  
Malte Krack ◽  
Harald Schoenenborn

The prediction of aerodynamic blade forcing is a very important topic in turbomachinery design. Usually, the wake from the upstream blade row and the potential field from the downstream blade row are considered as the main causes for excitation, which in conjunction with relative rotation of neighboring blade rows, give rise to dynamic forcing of the blades. In addition to those two mechanisms so-called Tyler-Sofrin (or scattered or spinning) modes, which refer to the acoustic interaction with blade rows further up- or downstream, may have a significant impact on blade forcing. In particular, they lead to considerable blade-to-blade variations of the aerodynamic loading. In part 1 of the paper a study of these effects is performed on the basis of a quasi 3D multi-row and multi-passage compressor configuration. Part 2 of the paper proposes a method to analyze the interaction of the aerodynamic forcing asymmetries with the already well-studied effects of random mistuning stemming from blade-to-blade variations of structural properties. Based on a finite element model of a sector, the equations governing the dynamic behavior of the entire bladed disk can be efficiently derived using substructuring techniques. The disk substructure is assumed as cyclically symmetric, while the blades exhibit structural mistuning and linear aeroelastic coupling. In order to avoid the costly multi-stage analysis, the variation of the aerodynamic loading is treated as an epistemic uncertainty, leading to a stochastic description of the annular force pattern. The effects of structural mistuning and stochastic aerodynamic forcing are first studied separately and then in a combined manner for a blisk of a research compressor without and with aeroelastic coupling.


Author(s):  
M. Vahdati ◽  
C. Breard ◽  
G. Simpson ◽  
M. Imregun

This paper will focus on core-compressor forced response with the aim to develop two design criteria, the so-called chordwise cumulative modal force and heightwise cumulative force, to assess the potential severity of the vibration levels from the correlation between the unsteady pressure distribution on the blade’s surface and the structural modeshape. It is also possible to rank various blade designs since the proposed criterion is sensitive to changes in both unsteady aerodynamic loads and the vibration modeshapes. The proposed methodology was applied to a typical core-compressor forced response case for which measured data were available. The Reynolds-averaged Navier-Stokes equations were used to represent the flow in a non-linear time-accurate fashion on unstructured meshes of mixed elements. The structural model was based on a standard finite element representation from which the vibration modes were extracted. The blade flexibility was included in the model by coupling the finite element model to the unsteady flow model in a time-accurate fashion. A series of numerical experiments were conducted by altering the stator wake and using the proposed indicator functions to minimize the rotor response levels. It was shown that a fourfold response reduction was possible for a certain mode with only a minor modification of the blade.


Author(s):  
K. Vogel ◽  
A. D. Naidu ◽  
M. Fischer

The prediction of aerodynamic damping is a key step towards high fidelity forced response calculations. Without the knowledge of absolute damping values, the resulting stresses from forced response calculations are often afflicted with large uncertainties. In addition, with the knowledge of the aerodynamic damping the aeroelastic contribution to mistuning can be considered. The first section of this paper compares two methods of one-way-coupled aerodynamic damping computations on an axial turbine. Those methods are: the aerodynamic influence coefficient, and the travelling wave mode method. Excellent agreement between the two methods is found with significant differences in required computational time. The average deviation between all methods for the transonic turbine is 4%. Additionally, the use of transient blade row methods with phase lagged periodic boundaries are investigated and the influence of periodic boundaries on the aerodynamic influence coefficients are assessed. A total of 23 out of 33 passages are needed to remove all influence from the periodic boundaries for the present configuration. The second part of the paper presents the aerodynamic damping calculations for a centrifugal compressor. Simulations are predominantly performed using the aerodynamic influence coefficient approach. The influence of the periodic boundaries and the recirculation channel is investigated. All simulations are performed on a modern turbocharger turbine and centrifugal compressor using ANSYS CFX V17.0 with an inhouse pre- and post-processing procedure at ABB Turbocharging. The comparison to experimental results concludes the paper.


Author(s):  
Bernd Beirow ◽  
Felix Figaschewsky ◽  
Arnold Kühhorn ◽  
Alfons Bornhorn

The potential of intentional mistuning to reduce the maximum forced response is analyzed within the development of an axial turbine blisk for ship diesel engine turbocharger applications. The basic idea of the approach is to provide an increased aerodynamic damping level for particular engine order excitations and mode shapes without any significant distortions of the aerodynamic performance. The mistuning pattern intended to yield a mitigation of the forced response is derived from an optimization study applying genetic algorithms. Two blisk prototypes have been manufactured a first one with and another one without employing intentional mistuning. Hence, the differences regarding the real mistuning and other modal properties can be experimentally determined and evaluated as well. In addition, the experimental data basis allows for updating structural models which are well suited to compute the forced response under operational conditions. In this way, the real benefit achieved with the application of intentional mistuning is demonstrated.


Author(s):  
R. J. Kuether ◽  
L. Renson ◽  
T. Detroux ◽  
C. Grappasonni ◽  
G. Kerschen ◽  
...  

Isolated resonance curves are separate from the main nonlinear forced-response branch, so they can easily be missed by a continuation algorithm and the resonant response might be underpredicted. The present work explores the connection between these isolated resonances and the nonlinear normal modes of the system and adapts an energy balance criterion to connect the two. This approach provides new insights into the occurrence of isolated resonances as well as a method to find an initial guess to compute the isolated resonance curve using numerical continuation. The concepts are illustrated on a finite element model of a cantilever beam with a nonlinear spring at its tip. This system presents jumps in both frequency and amplitude in its response to a swept sinusoidal excitation. The jumps are found to be the result of a modal interaction that creates an isolated resonance curve that eventually merges with the main resonance branch as the excitation force increases. Excellent insight into the observed dynamics is provided with the NNM theory, which supports that NNMs can also be a useful tool for predicting isolated resonance curves and other behaviors in the damped, forced response.


Sign in / Sign up

Export Citation Format

Share Document