Effect of Mixing Quality on NOx Emissions in Reheat Combustion of GT24 and GT26 Engines

Author(s):  
K. Michael Du¨sing ◽  
Andrea Ciani ◽  
Adnan Eroglu

Alstoms GT24 and GT26 engines feature a unique sequential combustion system [1, 2]. This system consists of a premixed combustor (called EV), which is followed by a high pressure turbine, a reheat combustor (called SEV) and a low pressure turbine (Figure 1). Recently improvements in NOx performance of the SEV have been demonstrated. Starting with relatively simple methods numerous design variants have been tested and down selected. Further down-selection has been done with methods of increased complexity. Overall a fast and cost effective development process has been assured. During the development process the variation coefficient and unmixedness measured and calculated for mixing only systems (CFD and water channel) has proven to be a reliable indicators for low NOx emissions for the real combustion system on atmospheric and high pressure test rigs. To demonstrate this a comparison of both quantities against NOx emissions is shown. The paper focuses on the NOx results achieved during this development and its relation to mixing quantities. Using this relation, together with a detailed understanding of the flow characteristic in the SEV burner, reductions in NOx emissions for GT24 and GT26 SEV burner and lance hardware can be reached using relatively simple methods.

Author(s):  
Qingjun Zhao ◽  
Fei Tang ◽  
Huishe Wang ◽  
Jianyi Du ◽  
Xiaolu Zhao ◽  
...  

In order to explore the influence of hot streak temperature ratio on low pressure stage of a Vaneless Counter-Rotating Turbine, three-dimensional multiblade row unsteady Navier-Stokes simulations have been performed. The predicted results show that hot streaks are not mixed out by the time they reach the exit of the high pressure turbine rotor. The separation of colder and hotter fluids is observed at the inlet of the low pressure turbine rotor. After making interactions with the inner-extending shock wave and outer-extending shock wave in the high pressure turbine rotor, the hotter fluid migrates towards the pressure surface of the low pressure turbine rotor, and the most of colder fluid migrates to the suction surface of the low pressure turbine rotor. The migrating characteristics of the hot streaks are predominated by the secondary flow in the low pressure turbine rotor. The effect of buoyancy on the hotter fluid is very weak in the low pressure turbine rotor. The results also indicate that the secondary flow intensifies in the low pressure turbine rotor when the hot streak temperature ratio is increased. The effects of the hot streak temperature ratio on the relative Mach number and the relative flow angle at the inlet of the low pressure turbine rotor are very remarkable. The isentropic efficiency of the Vaneless Counter-Rotating Turbine decreases as the hot streak temperature ratio is increased.


Separations ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 30
Author(s):  
Emil A. Zaripov ◽  
Tiah Lee ◽  
Yuchu Dou ◽  
Cory S. Harris ◽  
Artem Egorov ◽  
...  

Quantification of major cannabinoids in cannabis products is normally performed using high-pressure liquid chromatography (HPLC)-based methods. We propose a cost-effective alternative method that successfully separates and quantifies 14 cannabinoids in a single run using capillary electrophoresis (CE) coupled with a UV detector in 18 min. The separation is carried out in 60% acetonitrile in the presence of 6.5 mM sodium hydroxide and 25 µM β-cyclodextrin, resulting in good separation of cannabinoids. Our CE method demonstrated the limit of detection between 1.2–1.8 µg/mL, with the linear range reaching up to 50 µg/mL. We validated the method performance by testing a plant extract and quantifying cannabinoid content. This method is the first to separate 14 cannabinoids in one run using a CE system with UV detection.


Author(s):  
Chaoshan Hou ◽  
Hu Wu

The flow leaving the high pressure turbine should be guided to the low pressure turbine by an annular diffuser, which is called as the intermediate turbine duct. Flow separation, which would result in secondary flow and cause great flow loss, is easily induced by the negative pressure gradient inside the duct. And such non-uniform flow field would also affect the inlet conditions of the low pressure turbine, resulting in efficiency reduction of low pressure turbine. Highly efficient intermediate turbine duct cannot be designed without considering the effects of the rotating row of the high pressure turbine. A typical turbine model is simulated by commercial computational fluid dynamics method. This model is used to validate the accuracy and reliability of the selected numerical method by comparing the numerical results with the experimental results. An intermediate turbine duct with eight struts has been designed initially downstream of an existing high pressure turbine. On the basis of the original design, the main purpose of this paper is to reduce the net aerodynamic load on the strut surface and thus minimize the overall duct loss. Full three-dimensional inverse method is applied to the redesign of the struts. It is revealed that the duct with new struts after inverse design has an improved performance as compared with the original one.


2021 ◽  
Author(s):  
Ebikebena M. Ombe ◽  
Ernesto G. Gomez ◽  
Aldia Syamsudhuha ◽  
Abdullah M. AlKwiter

Abstract This paper discusses the successful deployment of Multi-stage Fracturing (MSF) completions, composed of novel expandable steel packers, in high pressure, high temperature (HP/HT) horizontal gas wells. The 5-7/8" horizontal sections of these wells were drilled in high pressure, high temperature gas bearing formations. There were also washed-outs & high "dog-legs" along their wellbores, due to constant geo-steering required to keep the laterals within the hydrocarbon bearing zones. These factors introduced challenges to deploying the conventional MSF completion in these laterals. Due to the delicate nature of their packer elastomers and their susceptibility to degradation at high temperature, these conventional MSF completions could not be run in such hostile down-hole conditions without the risk of damage or getting stuck off-bottom. This paper describes the deployment of a novel expandable steel packer MSF completion in these tough down-hole conditions. These expandable steel packers could overcome the challenges mentioned above due to the following unique features: High temperature durability. Enhanced ruggedness which gave them the ability to be rotated & reciprocated during without risk of damage. Reduced packer outer diameter (OD) of 5.500" as compared to the 5.625" OD of conventional elastomer MSF packers. Enhanced flexibility which enabled them to be deployed in wellbores with high dog-leg severity (DLS). With the ability to rotate & reciprocate them while running-in-hole (RIH), coupled with their higher annular clearance & tolerance of high temperature, the expandable steel packers were key to overcoming the risk of damaging or getting stuck with the MSF completion while RIH. Also, due to the higher setting pressure of the expandable steel packers when compared to conventional elastomer packers, there was a reduced risk of prematurely setting the packers if high circulating pressure were encountered during deployment. Another notable advantage of these expandable packers is that they provided an optimization opportunity to reduce the number of packers required in the MSF completion. In a conventional MSF completion, two elastomer packers are usually required to ensure optimum zonal isolation between each MSF stage. However, due to their superior sealing capability, only one expandable steel packer is required to ensure good inter-stage isolation. This greatly reduces the number of packers required in the MSF completion, thereby reducing its stiffness & ultimately reducing the probability of getting stuck while RIH. The results of using these expandable steel packers is the successful deployment of the MSF completions in these harsh down-hole conditions, elimination of non-productive time associated with stuck or damaged MSF completion as well as the safe & cost-effective completion in these critical horizontal gas wells.


2017 ◽  
Vol 89 (6) ◽  
pp. 791-796
Author(s):  
Yasser A. Nogoud ◽  
Attie Jonker ◽  
Shuhaimi Mansor ◽  
A.A.A. Abuelnuor

Purpose This paper aims to propose a spreadsheet method for modeling and simulation of a retraction system mechanism for the retractable self-launching system for a high-performance glider. Design/methodology/approach More precisely, the method is based on parametric link design using Excel spreadsheets. Findings This method can be used for kinematic and dynamic analysis, graphical plotting and allows simulation of control kinematics with the ability to make quick and easy parametric changes to a design. It also has the ability to calculate the loads imposed on each component in the control system as a function of input loads and position. Practical implications This paper shows that it is possible to model complex control systems quickly and easily using spreadsheet programs already owned by most small companies. The spreadsheet model is a parametric model, and it gives a simple visual presentation of the control system with interactive movement and control by the user. Originality/value This spreadsheet model in conjunction with a simple CAD program enables the rapid and cost-effective development of control system components.


Author(s):  
S. Zerobin ◽  
S. Bauinger ◽  
A. Marn ◽  
A. Peters ◽  
F. Heitmeir ◽  
...  

This paper presents an experimental study of the unsteady flow field downstream of a high pressure turbine with ejected purge flows, with a special focus on a flow field discussion using the mode detection approach according to the theory of Tyler and Sofrin. Measurements were carried out in a product-representative one and a half stage turbine test setup, which consists of a high-pressure turbine stage followed by an intermediate turbine center frame and a low-pressure turbine vane row. Four independent purge mass flows were injected through the forward and aft cavities of the unshrouded high-pressure turbine rotor. A fast-response pressure probe was used to acquire time-resolved data at the turbine center frame duct inlet and exit. The interactions between the stator, rotor, and turbine center frame duct are identified as spinning modes, propagating in azimuthal direction. Time-space diagrams illustrate the amplitude variation of the detected modes along the span. The composition of the unsteadiness and its major contributors are of interest to determine the role of unsteadiness in the turbine center frame duct loss generation mechanisms and to avoid high levels of blade vibrations in the low-pressure turbine which can in turn result in increased acoustic emissions. This work offers new insight into the unsteady flow behavior downstream of a purged high-pressure turbine and its propagation through an engine-representative turbine center frame duct configuration.


Media Wisata ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ali Hasan

Green Management System (GMS) is an effort to protect the environment. With the depletion of natural resources, the protection of the environment is not only limited to a small part of its corporate social responsibility, but it must be a model in business organizations. Model GMS-oriented environment, will systematically affect the company in reducing waste, reducing the use of natural resources, reduce pollution and continuously monitoring the purpose of creating business results that were positive for all stakeholders. Modern business travel will continue to come under pressure from the environment and the realization of the company's sustainability strategy, the managers began to review the possibility of implementation of GMS in the management system of the organization; directs the management of the organization, developing technologies to reduce adverse environmental impact and develop the production of green (green production) more rational and cost-effective. Development and implementation of green policies in environmental management become an important part of the transformation of business management functions in optimizing the use of GMS to improve corporate performance and benefits for environmental sustainability. Direct implications for the development and implementation of environmental protection in the modern business organization in accordance with modern green standards and the principles of environmental sustainability and a company associated with the creation of the organization, program and structure, education and training of human resources will enable the transfer and dissemination of knowledge for environmental protection


2020 ◽  
Vol 23 (3) ◽  
pp. 198-203
Author(s):  
Wei Tian ◽  
Yongmei Qian ◽  
Ruozhu Wang ◽  
Yiming Wang

Glue-laminated cornstalk scrimber is a novel composite to substitute timber. This composite can be prepared in three steps: selecting flawless cornstalks, laying them parallel to grain, and gluing the scrimbers under high pressure. Compared with ordinary timber, glue-laminated cornstalk scrimber excels in the resistance to water, damping, insect, and fire. It is therefore widely recognized as novel eco-friendly and cost- effective composite with great potential in the building industry. The tensile strength of glue-laminated cornstalk scrimber mainly depends on the parallel-to-grain strength of its fibers. The mechanical performance parallel to grain directly determines that of this composite. Hence, this paper carries out experimental analysis on the Young’s moduli and parallel-to-grain tensile strengths of cornstalk scrimber and glue-laminated cornstalk scrimber. The results show that the load-strain curve of glue-laminated cornstalk scrimber basically changed linearly parallel to grain, and the material exhibited stable Young’s modulus and good strength; the glue-laminated cornstalk scrimber had a slightly higher tensile strength than cornstalk scrimber, and could thus replace timber as a building material.


Sign in / Sign up

Export Citation Format

Share Document