scholarly journals Active Piezoelectric Vibration Control of Subscale Composite Fan Blades

Author(s):  
Kirsten P. Duffy ◽  
Benjamin B. Choi ◽  
Andrew J. Provenza ◽  
James B. Min ◽  
Nicholas Kray

As part of the Fundamental Aeronautics program, researchers at NASA Glenn Research Center (GRC) are investigating new technologies supporting the development of lighter, quieter, and more efficient fans for turbomachinery applications. High performance fan blades designed to achieve such goals will be subjected to higher levels of aerodynamic excitations which could lead to more serious and complex vibration problems. Piezoelectric materials have been proposed as a means of decreasing engine blade vibration either through a passive damping scheme, or as part of an active vibration control system. For polymer matrix fiber composite blades, the piezoelectric elements could be embedded within the blade material, protecting the brittle piezoceramic material from the airflow and from debris. To investigate this idea, spin testing was performed on two General Electric Aviation (GE) subscale composite fan blades in the NASA GRC Dynamic Spin Rig Facility. The first bending mode (1B) was targeted for vibration control. Because these subscale blades are very thin, the piezoelectric material was surface-mounted on the blades. Three thin piezoelectric patches were applied to each blade — two actuator patches and one small sensor patch. These flexible macro-fiber-composite patches were placed in a location of high resonant strain for the 1B mode. The blades were tested up to 5000 rpm, with patches used as sensors, as excitation for the blade, and as part of open- and closed-loop vibration control. Results show that with a single actuator patch, active vibration control causes the damping ratio to increase from a baseline of 0.3% critical damping to about 1.0% damping at 0 RPM. As the rotor speed approaches 5000 RPM, the actively controlled blade damping ratio decreases to about 0.5% damping. This occurs primarily because of centrifugal blade stiffening, and can be observed by the decrease in the generalized electromechanical coupling with rotor speed.

Author(s):  
Kirsten P. Duffy ◽  
Benjamin B. Choi ◽  
Andrew J. Provenza ◽  
James B. Min ◽  
Nicholas Kray

As part of the Fundamental Aeronautics program, researchers at NASA Glenn Research Center (GRC) are investigating new technologies supporting the development of lighter, quieter, and more efficient fans for turbomachinery applications. High performance fan blades designed to achieve such goals will be subjected to higher levels of aerodynamic excitations which could lead to more serious and complex vibration problems. Piezoelectric materials have been proposed as a means of decreasing engine blade vibration either through a passive damping scheme, or as part of an active vibration control system. For polymer matrix fiber composite blades, the piezoelectric elements could be embedded within the blade material, protecting the brittle piezoceramic material from the airflow and from debris. To investigate this idea, spin testing was performed on two General Electric Aviation (GE) subscale composite fan blades in the NASA GRC Dynamic Spin Rig Facility. The first bending mode (1B) was targeted for vibration control. Because these subscale blades are very thin, the piezoelectric material was surface-mounted on the blades. Three thin piezoelectric patches were applied to each blade—two actuator patches and one small sensor patch. These flexible macro-fiber-composite patches were placed in a location of high resonant strain for the 1B mode. The blades were tested up to 5000 rpm, with patches used as sensors, as excitation for the blade, and as part of open- and closed-loop vibration control. Results show that with a single actuator patch, active vibration control causes the damping ratio to increase from a baseline of 0.3% critical damping to about 1.0% damping at 0 rpm. As the rotor speed approaches 5000 rpm, the actively controlled blade damping ratio decreases to about 0.5% damping. This occurs primarily because of centrifugal blade stiffening, and can be observed by the decrease in the generalized electromechanical coupling with rotor speed.


2003 ◽  
Vol 17 (08n09) ◽  
pp. 1744-1749 ◽  
Author(s):  
T. Aoki ◽  
A. Shimamoto

In this paper, epoxy matrix composite beams with embedded TiNi (SMA: Shape Memory Alloy) fiber are applied to enhance the strength and fracture toughness of the machinery components. It is also well known that SMA shows the remarkable changes of stiffness and damping ratio between martensite at lower temperature and austenite at high temperature. A shape recovery force is associated with inverse phase transformation of SMA. The effects of heating with current and pre-strain in TiNi fiber of SMA on vibration characteristics are experimentally investigated. The active vibration control is achieved by controlling the current and pre-strain.


2008 ◽  
Vol 2008 ◽  
pp. 1-14 ◽  
Author(s):  
Douglas Domingues Bueno ◽  
Clayton Rodrigo Marqui ◽  
Rodrigo Borges Santos ◽  
Camilo Mesquita Neto ◽  
Vicente Lopes

This paper deals with the study of algorithms for robust active vibration control in flexible structures considering uncertainties in system parameters. It became an area of enormous interest, mainly due to the countless demands of optimal performance in mechanical systems as aircraft, aerospace, and automotive structures. An important and difficult problem for designing active vibration control is to get a representative dynamic model. Generally, this model can be obtained using finite element method (FEM) or an identification method using experimental data. Actuators and sensors may affect the dynamics properties of the structure, for instance, electromechanical coupling of piezoelectric material must be considered in FEM formulation for flexible and lightly damping structure. The nonlinearities and uncertainties involved in these structures make it a difficult task, mainly for complex structures as spatial truss structures. On the other hand, by using an identification method, it is possible to obtain the dynamic model represented through a state space realization considering this coupling. This paper proposes an experimental methodology for vibration control in a 3D truss structure using PZT wafer stacks and a robust control algorithm solved by linear matrix inequalities.


2008 ◽  
Vol 47-50 ◽  
pp. 137-140 ◽  
Author(s):  
Jung Woo Sohn ◽  
Seung Bok Choi

In this paper, active vibration control performance of the smart hull structure with Macro-Fiber Composite (MFC) is evaluated. The governing equations of motion of the hull structure with MFC actuators are derived based on the classical Donnell-Mushtari shell theory. Subsequently, modal characteristics are investigated and compared with the results obtained from finite element analysis and experiment. The governing equations of vibration control system are then established and expressed in the state space form. Linear Quadratic Gaussian (LQG) control algorithm is designed in order to effectively and actively control the imposed vibration. The controller is experimentally realized and control performances are evaluated.


Author(s):  
Giovanni Ferrari ◽  
Margherita Capriotti ◽  
Marco Amabili ◽  
Rinaldo Garziera

The active vibration control of a rectangular sandwich plate by Positive Position Feedback is experimentally investigated. The thin walled structure, consisting of carbon-epoxy outer skins and a Nomex paper honeycomb core, has completely free boundary conditions. A detailed linear and nonlinear characterization of the vibrations of the plate was previously performed by our research group [1, 2]. Four couples of unidirectional Macro Fiber Composite (MFC) piezoelectric patches are used as strain sensors and actuators. The positioning of the patches is led by a finite element modal analysis, in the perspective of a modal control strategy aimed at the lowest four natural frequencies of the structure. Numerical and experimental verifications estimate the resulting influence of the control hardware on the modal characteristics of the plate. Experimental values are also extracted for the control authority of the piezoelectric patches in the chosen configuration. Single Input – Single Output (SISO) and MultiSISO Positive Position Feedback algorithms are tested and the transfer function parameters of the controller are tuned according to the previously known values of modal damping. A totally experimental procedure to determine the participation matrices, necessary for the Multiple-Input and Multiple-Output configuration, is developed. The resulting algorithm proves successful in selectively reducing the vibration amplitude of the first four vibration modes in the case of a broadband disturbance. PPF is therefore used profitably on laminated composite plates in conjunction with strain transducers, for the control of the low frequency range up to 100 Hz. The relevant tuning procedure moreover, proves straightforward, despite the relatively high number of transducers. The rigid body motions which arise in case of free boundary conditions do not affect the operation of the active control.


2004 ◽  
Vol 126 (2) ◽  
pp. 278-283 ◽  
Author(s):  
Gregg D. Larson ◽  
Kenneth A. Cunefare

Significant interest has been generated by the possibilities of active vibration control through the implementation of state switching, with a specific implementation embodied through piezoceramic shunting. A state-switched absorber (SSA) is a vibration absorber that has the unique ability to change its resonant state amongst multiple distinct resonant states while in motion, thereby increasing the effective bandwidth over that of a single frequency device and thereby allowing control of multi-frequency, transient, and time-varying disturbances. In contrast, a switch-shunted damper (SSD) is a variant of an SSA that is used to increase the damping of the structure to which the damper is applied. Active vibration control applications discussed in the literature indicate the potential advantages of SSDs which employ piezoelectric ceramics as switchable springs with control algorithms that require switching states at points of non-zero strain. However, consideration of the constitutive equations for piezoelectric materials indicates a discontinuity in the electrical and mechanical conditions imposed by switching the stiffness at non-zero strains. A prototype SSD has been built and tested to experimentally investigate switching control logic and electrical and mechanical discontinuities at switching points; experimental measurements with this prototype SSD indicate that quarter-cycle switching algorithms which include switching states at a condition of maximum strain yield enhanced damping effectiveness but also leads to the generation of potentially undesirable mechanical transients.


Author(s):  
Hassan Ali Kadhem ◽  
Ahmed Abdul Hussein

Active vibration control is presented as an effective technique used for vibration suppression and for attenuating bad effects of disturbances on structure. In this work Proportional-Integral-Derivative control were employed to study suppression of active vibration wing affected by wind airflow. Two different composite wings with different manufacturing materials had been made with specific size to be suitable for using in wind tunnel. Piezoelectric (PZT (transducers are used as sensors and actuators in vibration control systems. The velocity was 25 m/s and three different attack angles (0, 10, 20 degrees) had been taken to show their effect on the wings vibrations suppression. The results shows that the suppression of the wing amplitude is reduced when the attack angle increases for both woven and random composite wing matt and this happened due to the vortex which became more violent at the increase of attack angle and also due to the area that face the wind which will increase when the attack angle increase and this will reduces the suppression. The maximum control amplitude of woven Glass-fiber matt was 1.75cm and the damping was about 38 % at zero attack angle while it was 2cm and the damping was about 26 % at 20 degree attack angle for random Glass-fiber composite matt


2020 ◽  
Vol 64 (1-4) ◽  
pp. 565-571
Author(s):  
Yajun Luo ◽  
Fengfan Yang ◽  
Linwei Ji ◽  
Yahong Zhang ◽  
Minglong Xu ◽  
...  

An active vibration control scheme was proposed based on Macro Fiber Composite (MFC) actuators for the bending and torsional vibration control of large flexible lightweight wing structures. Firstly, a finite element modeling and modal analysis of a flexible wing are carried out. Further, the number, type, and location distribution of the MFC actuators bonded on the supported beam of the wing are designed. Then, the actuated characteristics of the two kinds of MFC actuators required for bending and torsional vibration controls was theoretically analyzed. The simulation model of the overall vibration control system was also finally obtained. Finally, through ANSYS simulation analysis, the vibration control effect of the current control system on the first two-order low-frequency modal response of the wing structure is given. The simulation results show that the proposed active vibration control scheme has specific feasibility and effectiveness.


2016 ◽  
Vol 24 (3) ◽  
pp. 505-526 ◽  
Author(s):  
M Yaqoob Yasin ◽  
Santosh Kapuria

In this work, we study the effect of piezoelectric nonlinearity on shape and active vibration control of smart piezolaminated composite and sandwich shallow shells under strong field actuation. An efficient finite element model with advanced laminate kinematics and full electromechanical coupling is developed for this purpose. The nonlinearity is modeled using a rotationally invariant quadratic constitutive relationship for the piezoelectric material. For the laminate kinematics, a recently developed efficient layerwise theory, which is computationally as efficient as an equivalent single-layer theory, and has been shown to yield very accurate results in comparison with three-dimensional piezoelasticity based solutions for linear electromechanical response of hybrid laminated shells, has been employed. The nonlinear static response for shape control is obtained using the direct iteration method, and the active vibration control response with linear quadratic Gaussian controller is obtained by using the feedback linearization approach through control input transformation. It is shown that the linear model significantly overestimates the voltage required for shape or vibration control, when the applied electric field is beyond the threshold limit of the actuator. Thus, the use of the nonlinear model is essential for designing the control system utilizing the full actuation authority of the actuators. The effects of actuator thickness, radius of curvature to span ratio and applied loading on the relative difference between linear and nonlinear predictions are illustrated for shape and vibration control of smart cylindrical and spherical shells.


Sign in / Sign up

Export Citation Format

Share Document