scholarly journals Characterization of the Acoustic Interactions in a Two-Staged Multi-Injection Combustor Fed With Liquid Fuel

Author(s):  
T. Providakis ◽  
L. Zimmer ◽  
P. Scouflaire ◽  
S. Ducruix

Burners operating in lean premixed prevaporized (LPP) regimes are considered as good candidates to reduce pollutant emissions from gas turbines. Lean combustion regimes result in lower burnt gas temperatures and therefore a reduction on the NOx emissions, one of the main pollutant species. However, these burners usually show strong flame dynamics, making them prone to various stabilization problems (combustion instabilities, flashback, flame extinction). To face this issue, multi-injection staged combustion can be envisaged. Staging procedures enable fuel distribution control, while multipoint injections can lead to a fast and efficient mixing. A laboratory-scale staged multipoint combustor is developed in the present study, in the framework of LPP combustion, with an injection device close to the industrial one. Using a staging procedure between the primary pilot stage and the secondary multipoint one, droplet and velocity field distributions can be varied in the spray that is formed at the entrance of the combustion chamber. The resulting spray and the flame are characterized using OH-Planar Laser Induced Fluorescence, High Speed Particle Image Velocimetry and Phase Doppler Anemometry measurements. Three staging values, corresponding to three different flame stabilization processes, are analyzed, while power is kept constant. It is shown that mean values are strongly influenced by the fuel distribution and the flame position. Using adequate post-processing, the interaction between the acoustic field and the droplet behavior is characterized. Spectral analysis reveals a strong acoustic-flame coupling leading to a low frequency oscillation of both the velocity field and the spray droplet distribution. In addition, acoustic measurements in the feeding line show that a strong oscillation of the acoustic field leading to a change in fuel injection, and hence droplet behavior.

Author(s):  
Theodore Providakis ◽  
Laurent Zimmer ◽  
Philippe Scouflaire ◽  
Sébastien Ducruix

Burners operating in lean premixed prevaporized (LPP) regimes are considered as good candidates to reduce pollutant emissions from gas turbines. Lean combustion regimes result in lower burnt gas temperatures and therefore a reduction on the NOx emissions, one of the main pollutant species. However, these burners usually show strong flame dynamics, making them prone to various stabilization problems (combustion instabilities, flashback, flame extinction). To face this issue, multi-injection staged combustion can be envisaged. Staging procedures enable fuel distribution control, while multipoint injections can lead to a fast and efficient mixing. A laboratory-scale staged multipoint combustor is developed in the present study, in the framework of LPP combustion, with an injection device close to the industrial one. Using a staging procedure between the primary pilot stage and the secondary multipoint one, droplet and velocity field distributions can be varied in the spray that is formed at the entrance of the combustion chamber. The resulting spray and flame are characterized using OH-planar laser induced fluorescence, high speed particle image velocimetry, and phase Doppler anemometry measurements. Three staging values, corresponding to three different flame stabilization processes, are analyzed, while power is kept constant. It is shown that mean values are strongly influenced by the fuel distribution and the flame position. Using adequate postprocessing, the interaction between the acoustic field and the droplet behavior is characterized. Spectral analysis reveals a strong acoustic-flame coupling leading to a low frequency oscillation of both the velocity field and the spray droplet distribution. In addition, acoustic measurements in the feeding line show that a strong oscillation of the acoustic field leads to a change in fuel injection, and hence droplet behavior.


Author(s):  
T. Providakis ◽  
L. Zimmer ◽  
P. Scouflaire ◽  
S. Ducruix

Burners operating in lean premixed prevaporized (LPP) regimes are considered as good candidates to reduce pollutant emissions from gas turbines. Lean combustion regimes result in lower burnt gas temperatures and therefore a reduction on the NOx emissions, one of the main pollutant species. However, these burners usually show strong flame dynamics, making them prone to various stabilization problems (combustion instabilities, flashback, flame extinction). To face this issue, multi-injection staged combustion can be envisaged. Staging procedures enable fuel distribution control, while multipoint injections can lead to a fast and efficient mixing. A laboratory-scale staged multipoint combustor is developed in the present study, in the framework of LPP combustion, with an injection device close to the industrial one. Using a staging procedure between the primary pilot stage and the secondary multipoint one, droplet and velocity field distributions can be varied in the spray that is formed at the entrance of the combustion chamber. Non-reactive and reactive flows are characterized through an extensive Phase Doppler Anemometry (PDA) campaign. Three staging values, corresponding to three different flame stabilization processes, are analyzed, while power is kept constant. It is shown that mean values and droplet distributions are affected by the staging procedure in the non-reactive as in the reactive situations. Using adequate post-processing, it is also possible to study non-reactive and reactive flow/flame dynamics. Spectral analysis shows that the non-reactive flow is strongly structured by a high frequency rotating structure that can clearly be associated with a precessing vortex core (PVC), while the reactive situation encounters a strong acoustic-flame coupling leading to a low frequency oscillation of both the velocity field and the spray droplet distribution. In this last situation, high frequency phenomena, which may be due to PVC, are still visible.


2001 ◽  
Vol 7 (6) ◽  
pp. 375-385 ◽  
Author(s):  
R. C. Hendricks ◽  
D. T. Shouse ◽  
W. M. Roquemore ◽  
D. L. Burrus ◽  
B. S. Duncan ◽  
...  

The Trapped Vortex Combustor (TVC) potentially offers numerous operational advantages over current production gas turbine engine combustors. These include lower weight, lower pollutant emissions, effective flame stabilization, high combustion efficiency, excellent high altitude relight capability, and operation in the lean burn or RQL modes of combustion. The present work describes the operational principles of the TVC, and extends diffuser velocities toward choked flow and provides system performance data. Performance data include EINOx results for various fuel-air ratios and combustor residence times, combustion efficiency as a function of combustor residence time, and combustor lean blow-out (LBO) performance. Computational fluid dynamics (CFD) simulations using liquid spray droplet evaporation and combustion modeling are performed and related to flow structures observed in photographs of the combustor. The CFD results are used to understand the aerodynamics and combustion features under different fueling conditions. Performance data acquired to date are favorable compared to conventional gas turbine combustors. Further testing over a wider range of fuel-air ratios, fuel flow splits, and pressure ratios is in progress to explore the TVC performance. In addition, alternate configurations for the upstream pressure feed, including bi-pass diffusion schemes, as well as variations on the fuel injection patterns, are currently in test and evaluation phases.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Christoph A. Schmalhofer ◽  
Peter Griebel ◽  
Manfred Aigner

The use of highly reactive hydrogen-rich fuels in lean premixed combustion systems strongly affects the operability of stationary gas turbines (GT) resulting in higher autoignition and flashback risks. The present study investigates the autoignition behavior and ignition kernel evolution of hydrogen–nitrogen fuel mixtures in an inline co-flow injector configuration at relevant reheat combustor operating conditions. High-speed luminosity and particle image velocimetry (PIV) measurements in an optically accessible reheat combustor are employed. Autoignition and flame stabilization limits strongly depend on temperatures of vitiated air and carrier preheating. Higher hydrogen content significantly promotes the formation and development of different types of autoignition kernels: More autoignition kernels evolve with higher hydrogen content showing the promoting effect of equivalence ratio on local ignition events. Autoignition kernels develop downstream a certain distance from the injector, indicating the influence of ignition delay on kernel development. The development of autoignition kernels is linked to the shear layer development derived from global experimental conditions.


2019 ◽  
Vol 21 (9) ◽  
pp. 1662-1677 ◽  
Author(s):  
Xinyi Zhou ◽  
Tie Li ◽  
Yijie Wei ◽  
Ning Wang

Scaled model experiments can greatly reduce the cost, time and energy consumption in diesel engine development, and the similarity of spray characteristics has a primary effect on the overall scaling results of engine performance and pollutant emissions. However, although so far the similarity of spray characteristics under the non-evaporating condition has been studied to some extent, researches on scaling the evaporating sprays are still absent. The maximum liquid penetration length has a close relationship with the spray evaporation processes and is a key parameter in the design of diesel engine spray combustion system. In this article, the similarity of maximum liquid penetration length is theoretically derived based on the hypotheses that the spray evaporation processes in modern high-pressure common rail diesel engines are fuel–air mixing controlled and local interphase transport controlled, respectively. After verifying that the fuel injection rates are perfectly scaled, the similarity of maximum liquid penetration length in evaporating sprays is studied for three scaling laws using two nozzles with hole diameter of 0.11 and 0.14 mm through the high-speed diffused back-illumination method. Under the test conditions of different fuel injection pressures, ambient temperatures and densities, the lift-off law and speed law lead to a slightly increased maximum liquid penetration length, while the pressure law can well scale the maximum liquid penetration length. The experimental results are consistent with the theoretical analyses based on the hypothesis that the spray evaporation processes are fuel–air mixing controlled, indicating that the local interphase transports of energy, momentum and mass on droplet surface are not rate-controlled steps with respect to spray evaporation processes.


Author(s):  
Arman Ahamed Subash ◽  
Haisol Kim ◽  
Sven-Inge Möller ◽  
Mattias Richter ◽  
Christian Brackmann ◽  
...  

Abstract Experimental investigations were performed using a standard 3rd generation dry low emission (DLE) burner under atmospheric pressure to study the effect of central and pilot fuel addition, load variations and H2 enrichment in a NG flame. High-speed OH-PLIF and OH-chemiluminescence imaging were employed to investigate the flame stabilization, flame turbulence interactions, and flame dynamics. Along with the optical measurements, combustion emissions were recorded to observe the effect of changing operating conditions on NOX level. The burner is used in Siemens industrial gas turbines SGT-600, SGT-700 and SGT-800 with minor hardware differences. This study thus is a step to characterize fuel and load flexibility for these turbines. Without pilot and central fuel injections in the current burner configuration, the main flame is stabilized creating a central recirculation zone. Addition of the pilot fuel strengthens the outer recirculation zone (ORZ) and moves the flame slightly downstream, whereas the flame moves upstream without affecting the ORZ when central fuel injection is added. The flame was investigated utilizing H2/NG fuel mixtures where the H2 amount was changed from 0 to 100%. The flame becomes more compact, the anchoring position moves closer to the burner exit and the OH signal distribution becomes more distinct for H2 addition due to increased reaction rate, diffusivity, and laminar burning velocity. Changing the load from part to base, similar trends were observed in the flame behavior but in this case due to the higher heat release because of increased turbulence intensity.


Author(s):  
Kenneth O. Smith ◽  
Peter L. Therkelsen ◽  
David Littlejohn ◽  
Sy Ali ◽  
Robert K. Cheng

This paper reports the results of preliminary analyses that show the feasibility of developing a fuel flexible (natural gas, syngas and high-hydrogen fuel) combustion system for IGCC gas turbines. Of particular interest is the use of Lawrence Berkeley National Laboratory’s DLN low swirl combustion technology as the basis for the IGCC turbine combustor. Conceptual designs of the combustion system and the requirements for the fuel handling and delivery circuits are discussed. The analyses show the feasibility of a multi-fuel, utility-sized, LSI-based, gas turbine engine. A conceptual design of the fuel injection system shows that dual parallel fuel circuits can provide range of gas turbine operation in a configuration consistent with low pollutant emissions. Additionally, several issues and challenges associated with the development of such a system, such as flashback and auto-ignition of the high-hydrogen fuels, are outlined.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 794
Author(s):  
Heena Panchasara ◽  
Nanjappa Ashwath

Bio-oils produced by biomass pyrolysis are substantially different from those produced by petroleum-based fuels and biodiesel. However, they could serve as valuable alternatives to fossil fuels to achieve carbon neutral future. The literature review indicates that the current use of bio-oils in gas turbines and compression-ignition (diesel) engines is limited due to problems associated with atomisation and combustion. The review also identifies the progress made in pyrolysis bio-oil spray combustion via standardisation of fuel properties, optimising atomisation and combustion, and understanding long-term reliability of engines. The key strategies that need to be adapted to efficiently atomise and combust bio-oils include, efficient atomisation techniques such as twin fluid atomisation, pressure atomisation and more advanced and novel effervescent atomisation, fuel and air preheating, flame stabilization using swrilers, and filtering the solid content from the pyrolysis oils. Once these strategies are implemented, bio-oils can enhance combustion efficiency and reduce greenhouse gas (GHG) emission. Overall, this study clearly indicates that pyrolysis bio-oils have the ability to substitute fossil fuels, but fuel injection problems need to be tackled in order to insure proper atomisation and combustion of the fuel.


Author(s):  
Antoine Renaud ◽  
Sébastien Ducruix ◽  
Laurent Zimmer

Abstract Despite being good candidates for the reduction of pollutant emissions from gas turbines, burners operating in lean premixed prevaporized regimes often face stability issues and can be sensitive to perturbations. The swirling flow used to aerodynamically stabilize the flame can also lead to the appearance of a large-scale coherent flow structure known as the precessing vortex core (PVC). In this study, a swirl-stabilized combustor fed with liquid dodecane is studied at a globally lean operating condition with the help of high-speed diagnostics and dynamic mode decomposition (DMD) as the main postprocessing method. It is shown that the trace of a PVC originating inside the injector is still present in the fuel spray at the entrance of the chamber even though the aerodynamical structure itself is not detectable anymore. The perturbation of the fuel spray is then transmitted to the flame through local equivalence ratio fluctuations. It is observed that the PVC trace on the spray and thus on the flame can be suppressed by air flow modulations generated by a siren device. The suppression of this trace is shown to come from a decay of the aerodynamical structure itself rather than by a change in fuel mixing or vaporization. Analysis of the characteristic frequency of the PVC shows a frequency spread indicating a loss of coherence of the structure with the high-amplitude air flow rate fluctuations.


2021 ◽  
Author(s):  
A. Andreini ◽  
M. Amerighi ◽  
L. Palanti ◽  
B. Facchini

Abstract During the last decades several new technologies were investigated in order to reduce the pollutant emissions and increase the overall engine efficiency. Unluckily, some of them including the lean direct injection spray combustion hinder the ignition performances of the combustor. Moreover, several expensive tests under very challenging operating conditions must be carried out to obtain the required certifications and assess the combustor behaviour with respect to the ignition process. Therefore, a deeper knowledge of the phenomena involved in the flame onset is mandatory to shorten the design process and achieve the required performances from the very beginning. In the last years, CFD simulations established as valid alternative to the experiments to investigate the complex phenomena involved in the ignition process. In fact, several examples are available in scientific literature about the use of simulations to predict the development of the flame starting from an initial kernel. In particular, LES proved to be a reliable tool to uncover new mechanisms of ignition and flame stabilization in gas turbines. In this work, two reactive LES of the ignition process were attempted using ANSYS Fluent 2019R1, with the aim of testing the Thickened Flame Model already implemented in the solver. In fact, compared to the previous versions, a new formulation for the efficiency function based on the pioneering work of Colin was made available. Such promising tool was validated against some detailed experimental results of a lean swirled flame, known as KIAI-CORIA spray flame. At first, a non-reactive and reactive LES were carried out to validate the cold field and the stabilized flame structure respectively. Finally, two ignition simulations were performed, from initial spark deposition up to flame stabilization or kernel quenching. All the obtained results have been extensively compared against the available experimental data showing that the employed simulation setup is fairly capable of describing the phenomena involved in the rig ignition.


Sign in / Sign up

Export Citation Format

Share Document