Design and Test Results of a Ultra High Loaded Single Stage High Pressure Turbine

Author(s):  
Harjit S. Hura ◽  
Scott Carson ◽  
Rob Saeidi ◽  
Hyoun-Woo Shin ◽  
Paul Giel

This paper describes the engine and rig design, and test results of an ultra-highly loaded single stage high pressure turbine. In service aviation single stage HPTs typically operate at a total-to-total pressure ratio of less than 4.0. At higher pressure ratios or energy extraction the nozzle and blade both have regions of supersonic flow and shock structures which, if not mitigated, can result in a large loss in efficiency both in the turbine itself and due to interaction with the downstream component which may be a turbine center frame or a low pressure turbine. Extending the viability of the single stage HPT to higher pressure ratios is attractive as it enables a compact engine with less weight, and lower initial and maintenance costs as compared to a two stage HPT. The present work was performed as part of the NASA UEET (Ultra-Efficient Engine Technology) program from 2002 through 2005. The goal of the program was to design and rig test a cooled single stage HPT with a pressure ratio of 5.5 with an efficiency at least two points higher than the state of the art. Preliminary design tools and a design of experiments approach were used to design the flow path. Stage loading and through-flow were set at appropriate levels based on prior experience on high pressure ratio single stage turbines. Appropriate choices of blade aspect ratio, count, and reaction were made based on comparison with similar HPT designs. A low shock blading design approach was used to minimize the shock strength in the blade during design iterations. CFD calculations were made to assess performance. The HPT aerodynamics and cooling design was replicated and tested in a high speed rig at design point and off-design conditions. The turbine met or exceeded the expected performance level based on both steady state and radial/circumferential traverse data. High frequency dynamic total pressure measurements were made to understand the presence of unsteadiness that persists in the exhaust of a transonic turbine.

Author(s):  
K. R. Pullen ◽  
N. C. Baines ◽  
S. H. Hill

A single stage, high speed, high pressure ratio radial inflow turbine was designed for a single shaft gas turbine engine in the 200 kW power range. A model turbine has been tested in a cold rig facility with correct simulation of the important non-dimensional parameters. Performance measurements over a wide range of operation were made, together with extensive volute and exhaust traverses, so that gas velocities and incidence and deviation angles could be deduced. The turbine efficiency was lower than expected at all but the lowest speed. The rotor incidence and exit swirl angles, as obtained from the rig test data, were very similar to the design assumptions. However, evidence was found of a region of separation in the nozzle vane passages, presumably caused by a very high curvature in the endwall just upstream of the vane leading edges. The effects of such a separation are shown to be consistent with the observed performance.


Author(s):  
Richard Celestina ◽  
Spencer Sperling ◽  
Louis Christensen ◽  
Randall Mathison ◽  
Hakan Aksoy ◽  
...  

Abstract This paper presents the development and implementation of a new generation of double-sided heat-flux gauges at The Ohio State University Gas Turbine Laboratory (GTL) along with heat transfer measurements for film-cooled airfoils in a single-stage high-pressure transonic turbine operating at design corrected conditions. Double-sided heat flux gauges are a critical part of turbine cooling studies, and the new generation improves upon the durability and stability of previous designs while also introducing high-density layouts that provide better spatial resolution. These new customizable high-density double-sided heat flux gauges allow for multiple heat transfer measurements in a small geometric area such as immediately downstream of a row of cooling holes on an airfoil. Two high-density designs are utilized: Type A consists of 9 gauges laid out within a 5 mm by 2.6 mm (0.20 inch by 0.10 inch) area on the pressure surface of an airfoil, and Type B consists of 7 gauges located at points of predicted interest on the suction surface. Both individual and high-density heat flux gauges are installed on the blades of a transonic turbine experiment for the second build of the High-Pressure Turbine Innovative Cooling program (HPTIC2). Run in a short duration facility, the single-stage high-pressure turbine operated at design-corrected conditions (matching corrected speed, flow function, and pressure ratio) with forward and aft purge flow and film-cooled blades. Gauges are placed at repeated locations across different cooling schemes in a rainbow rotor configuration. Airfoil film-cooling schemes include round, fan, and advanced shaped cooling holes in addition to uncooled airfoils. Both the pressure and suction surfaces of the airfoils are instrumented at multiple wetted distance locations and percent spans from roughly 10% to 90%. Results from these tests are presented as both time-average values and time-accurate ensemble averages in order to capture unsteady motion and heat transfer distribution created by strong secondary flows and cooling flows.


Author(s):  
Colin Rodgers ◽  
Dan Brown

Three 140mm tip diameter centrifugal compressors were designed and tested to determine the one exhibiting the best performance most suitable for eventual application to a small 60KW radial flow type gas turbine. The design features, and stage test results of these three moderately high pressure ratio impellers are presented, together with a comparison of their respective test and CFD computed performance maps.


1978 ◽  
Vol 100 (2) ◽  
pp. 197-202 ◽  
Author(s):  
R. L. Binsley ◽  
J. L. Boynton

The detailed aerodynamic design and test verification of a 6000-hp (4474-kW) turbine with a supersonic first stage for an airborne application is described. The 12.3-in. (312.4-mm) pitch diameter turbine is driven by products of hydrazine decomposition at 700 psia (4.826 MPa) and 2110 R (1172 K) with an overall pressure ratio of 41.2. The design of the supersonic nozzles and rotor incorporated improved concepts compared to previously reported designs. Test results show that the predicted performance was verified. The supersonic design concepts described are applicable to other high-pressure ratio designs where maximum efficiency is required.


Author(s):  
Murari Sridhar ◽  
Sathish Sunnam ◽  
Shraman Goswami ◽  
Jong S. Liu

In the continual effort to improve analysis and design techniques, Honeywell is investigating on the use of CFD to predict the aerodynamic performance of a high pressure turbine. The present study has a two fold objective. The first objective is to validate the commercially available CFD codes for aerodynamic performance prediction of a two-stage high pressure turbine at design and off-design points. The other objective is to establish guidelines to help the designer to successfully.set-up and execute the suitable CFD model analysis. The validation to model the stage interfaces is performed with three different types of approaches such as Mixing Plane approach, Frozen Rotor approach and NonLinear Harmonic approach. The film holes on the blade surface, hub and the shroud walls are modeled by using source term cooling and actual film hole modeling techniques for all the analysis. The validation is accomplished with the test results of a two-stage high pressure turbine, Energy Efficient Engine (E3). The aerodynamic performance data at a design point and typical off-design point are taken as test cases for the validation study. One dimensional performance parameters such as corrected mass flow rate, total pressure ratio, cycle efficiency along with two dimensional spanwise distribution of total pressure, total temperature which are obtained from CFD results are compared with test data. Flow field results are presented to understand the aerodynamic behavior.


Author(s):  
Inam U. Haq

This paper encapsulates generalized considerations of power turbine matching with aeroderivative gas generator at high power settings. A computation route is set up to estimate the magnitude of the desired parameters from design point knowledge of a gas generator. Then, a method is delineated to verify matching of power turbine inlet nozzle area with exhaust of gas generator by measuring tangible tested parameters. Data manipulation revealed that there exists a favorable correlation between pressure ratio of high pressure turbine and gas generator speed that may directly reflect the influence of physical area change of power turbine inlet nozzle area. A practical example is presented to demonstrate the procedure. From engine design to retirement, the generalized considerations may be applied on several occasions where question of matching may become important and require explanation for performance and financial justifications. Some generalized rules of matching are condensed and their applications are suggested.


Author(s):  
Tobias Gwehenberger ◽  
Martin Thiele ◽  
Martin Seiler ◽  
Douglas Robinson

To meet the ever-increasing demands that will be made on engines, and especially on planned new engine generations, in the future, the power density of their turbochargers will have to be significantly increased. Raising the brake mean effective pressure, introducing Miller timing and providing support for exhaust-gas treatment all presuppose an increase in the turbo’s compressor pressure ratio while keeping the turbo unit as compact as possible. To fulfill all of these conditions with single-stage turbocharging, a new approach to future turbocharger design is needed, especially when additional expensive materials, such as titanium, are not to be used. On the compressor side, when using proven aluminum compressors, this requires additional cooling of the compressor wheels. But other turbocharger components too, such as the turbine, bearings, shaft seals and also the casings and their connections, are exposed to higher thermal and mechanical stresses as a result of the pressure ratios being far higher than those of turbochargers currently on the market. The challenge, which could also be called a balancing act, in dimensioning new turbochargers for single-stage high-pressure turbocharging with aluminum compressors is to design the components with the help of the available tools such that sufficient safety and component lifetime are achieved while performance and component efficiency are optimized. By using the available calculation tools, such as FEM or for the fluid dynamics CFD, it is now possible to achieve compressor pressure ratios of up to 5.8 in continuous operation with single-stage turbocharging while ensuring a compact turbocharger design and aluminum compressors. The paper describes how ABB Turbo Systems Ltd has successfully developed and qualified a new single-stage high-pressure turbocharger generation with radial turbine which allows compressor pressure ratios of up to 5.8 in continuous operation at 100% engine load. First successful engine tests with the new A100 radial turbocharger generation have been carried out both on medium- and on high-speed engines. The first frame sizes of the new A100 high-pressure turbocharger series have been released for market introduction, setting a significant new benchmark for turbocharging advanced diesel and gas engines.


Author(s):  
Sridhar Murari ◽  
Sathish Sunnam ◽  
Jong S. Liu

With the advent of fast computers and availability of less costly memory resources, computational fluid dynamics (CFD) has emerged as a powerful tool for the design and analysis of flow and heat transfer of high pressure turbine stages. CFD gives an insight in to flow patterns that are difficult, expensive or impossible to study using experimental techniques. However, the application of CFD depends on its accuracy and reliability. This requires the CFD code to be validated with laboratory measurements to ensure its predictive capacity. In the continual effort to improve analysis and design techniques, Honeywell has been investigating in the use of CFD to predict the aerodynamic performance of a high pressure turbine. Reynolds Averaged Navier Stokes (RANS), unsteady models like detached eddy simulation (DES), large eddy simulation (LES), and Scale Adaptive Simulation (SAS) are used to predict the aerodynamic performance of a high pressure turbine. Mixing plane approach is used to address the flow data transport across the stationary interface in RANS simulation. The film holes on blade surface and end walls for all the analysis are modeled by using actual film hole modeling technique. The validation is accomplished with the test results of a high pressure turbine, Energy Efficient Engine (E3). The aerodynamic performance data at design point, typical off-design points are taken as test cases for the validation study. One dimensional performance parameters such as corrected mass flow rate, total pressure ratio, cycle efficiency, and two dimensional spanwise distributions of total pressure, total temperature and flow angle that are obtained from CFD results are compared with test data. Streamlines and flow field results at different measurement planes are presented to understand the aerodynamic behavior.


Sign in / Sign up

Export Citation Format

Share Document