Bleed Slot Benefits on Turbocharger Centrifugal Compressor Stability

Author(s):  
Matthieu Gancedo ◽  
Erwann Guillou ◽  
Ephraim Gutmark

Bleed slots located in the inducer region of centrifugal compressors have been demonstrated to extend the surge margin with minimal negative impact on performance. This paper describes the investigation of the effect of a bleed slot on map width enhancement of a turbocharger centrifugal compressor used for heavy duty diesel engine application. The goal is to evaluate the overall pressure instabilities on the compressor map and to study the dynamic phenomena occurring at low mass flow rates to better understand the benefits of the bleed slot on the compressor stability and surge line. The obstruction of the bleed slot permitted to compare the compressor behavior with the recirculation feature and without it. The pressure instability levels were measured along the accessible compressor map for the two cases using a high speed response pressure transducer at the compressor outlet. In addition, static and dynamic pressure measurements were conducted within the diffuser using respectively pressure taps and high speed response pressure transducers. The compressor with open bleed slot proved to have lower instability levels at low mass flow rates when not experiencing deep surge. Frequency responses at low mass flow rates showed that the implementation of the bleed slot suppresses broad band frequencies below the rpm frequency, which improves the overall stability. These frequencies are associated with rotating instabilities (RIs) with changing propagation speed depending on the rotational speed. At lower speeds, RIs are propagated with the wheel rotation whereas at higher speeds, they tend to propagate with the speed associated with their characteristic frequency.

Author(s):  
Julia E. Stephens ◽  
Sameer Kulkarni

Abstract Advancements in core compressor technologies are necessary for next generation, high Overall Pressure Ratio (OPR) turbofan engines. High pressure compressors (HPCs) for future engines are being designed with exit corrected mass flow rates less than 2.25 kg/s (5 lbm/s). In order to accurately measure the performance of these advanced designs, high accuracy measurements are needed in test facilities. The W7 High Speed Multistage Axial Compressor Facility at NASA Glenn Research Center has been used to acquire data for advanced compressor designs. This facility utilizes an advanced differential pressure flow meter called a V-Cone. The facility has historically tested components with physical mass flow rates in the range of 27 to 45 kg/s (60 to 100 lbm/s). As such, when the V-Cone was calibrated prior to installation, the calibrations focused on higher mass flow rates, and uncertainties in that regime range from 0.5% to 0.85%. However, for low mass flow rates under 9 kg/s (20 lbm/s), expected in tests of advanced high OPR HPCs rear stages, the uncertainties of the V-Cone exceed 2.5%. To address this, using a method similar to that utilized by the National Institute of Standards and Technology, an array of Critical Flow Venturi Nozzles (CFVs) was installed in the W7 test section and used to calibrate the V-Cone in 0.5 kg/s (1 lbm/s) increments up to 10.5 kg/s (23 lbm/s). This effort details the measurements and uncertainties associated with this calibration which resulted in a final uncertainty of the V-Cone measurements under 1%.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Anna Avramenko ◽  
Alexey Frolov ◽  
Jari Hämäläinen

The presented research demonstrates the results of a series of numerical simulations of gas flow through a single-stage centrifugal compressor with a vaneless diffuser. Numerical results were validated with experiments consisting of eight regimes with different mass flow rates. The steady-state and unsteady simulations were done in ANSYS FLUENT 13.0 and NUMECA FINE/TURBO 8.9.1 for one-period geometry due to periodicity of the problem. First-order discretization is insufficient due to strong dissipation effects. Results obtained with second-order discretization agree with the experiments for the steady-state case in the region of high mass flow rates. In the area of low mass flow rates, nonstationary effects significantly influence the flow leading stationary model to poor prediction. Therefore, the unsteady simulations were performed in the region of low mass flow rates. Results of calculation were compared with experimental data. The numerical simulation method in this paper can be used to predict compressor performance.


1993 ◽  
Vol 3 (1) ◽  
pp. 77-89 ◽  
Author(s):  
M. T. Lund ◽  
Paul E. Sojka ◽  
Arthur H. Lefebvre ◽  
P. G. Gosselin

Author(s):  
Michael Bartelt ◽  
Thomas Kwitschinski ◽  
Thomas Ceyrowsky ◽  
Daniel Grates ◽  
Joerg R. Seume

Increases on mass flow rates of modern radial process compressors result on larger machine components. In particular, the dimensions of the outlet volutes increase strongly, resulting in disproportionately large machines whose technical feasibility is restricted due to technological and economical reasons. A resulting aim is to design modern radial compressors much more compact, while improving the efficiency and the pressure ratio. Therefore, the present experimental investigation addresses the compressor behaviour for reduced dimensions of rectangular volutes. Furthermore, the experimental setups are numerically modelled and different operating points are simulated with a commercial CFD-Code. A rectangular, external reference volute is equipped with differently shaped blockage-inlays and the global compressor parameters are measured for all variants. Additionally, the pressure and velocity distributions of the local flow field are determined experimentally for varying mass flow ratios at different circumferentially distributed volute layers. The decrease of the volute cross-section results in a reduction of the compressor map width especially at high mass flow rates. Recommendations are given for designing compact volutes of large radial compressors.


Author(s):  
Dhinagaran Ramachandran ◽  
Srinivasa Rao Billa ◽  
Balamurugan Mayandi ◽  
Perumal Balappan ◽  
Shyamaprasad Kanthila ◽  
...  

Abstract The scope of this study is to develop a turbocharger turbine wheel with improved aerodynamic performance at low mass flow rates and with reduced inertia for better transient response. The contrasting effect of geometrical shape and size parameters on the objectives of aerodynamic performance and transient response gives rise to the need to explore the design space for the best design having good trade-off between the multi-objective requirements. The search for an optimum aerodynamic design is a challenge due to structural requirements as well. A turbine wheel that is best suited for the current application is selected from the library as a baseline and this wheel is further optimized to meet the targets. Preliminary screening allowed the identification of parameters having major impact on the objectives and these results have been used to train a Response Surface (RS). Further, in the interest of reducing computational cost, a virtual optimization algorithm based on the RS has been employed to predict optimum design within the design constraints. The optimum designs thus obtained are validated with Computational Fluid Dynamics simulations for flow performance and Finite Element solver for satisfying structural requirements. This approach has allowed for application-based design of turbine wheel for instance, by changing key parameters like blade angle distribution, number of blades, axial length, blade height and width. An inertia reduction up to 10% has been obtained while retaining the performance at low mass flow rates.


Author(s):  
Jin Tang ◽  
Teemu Turunen-Saaresti ◽  
Arttu Reunanen ◽  
Juha Honkatukia ◽  
Jaakko Larjola

Numerical analysis is conducted for the 3-dimensional impeller and vaneless diffuser of a small centrifugal compressor. The influence of impeller tip clearance is investigated. A Navier-Stokes flow solver Finflo has been applied for the simulation. A practical real gas model has been generated for the calculation. Simulations with different sizes of tip clearance at different mass flow rates have been made. The results are compared to experimental results at a certain tip clearance and one operating point. Reasonable agreement has been obtained. The ideal gas model has also been applied to compare with the real gas model. The numerical results show that tip clearance has a significant effect on the performance of a small centrifugal compressor. As the size of tip clearance increases, both the pressure ratio and the efficiency decrease. The decreasing rate of efficiency is higher at higher mass flow rates and lower at lower mass flow rates. The input power of the compressor hardly changes with different sizes of tip clearance, but increases as the mass flow rate increases. The incidence of impeller and flow angle at the exit of the impeller increase as the size of tip clearance increases. Correlations of the size of tip clearance with the efficiency drop and change of flow angle at the exit of impeller are given. The detailed flow distribution shows that as the size of tip clearance increases, the tangential leaking flow at the tip clearance makes the low velocity flow region grow larger and move from the suction-shroud corner to the center of the flow channel. The main flow at the pressure side is compressed and accelerated. Therefore the uniformity of the flow in the whole channel decreases. The detailed flow distribution also shows that the leaking flow is stronger at higher mass flow rates.


1990 ◽  
Vol 68 (4) ◽  
pp. 337-341
Author(s):  
B. G. Gordon ◽  
V. N. Pomel'nikov

Author(s):  
Muna S. Kassim ◽  
Fouad A. Saleh ◽  
Alaa Th. Aliwi

Experimental and numerical investigation to study the influence of add (one groove and two grooves) to the unshroud impeller onto the rotating stall as well fluctuations of pressure at a high speed blower of centrifugal. Experimental test rig which includes blower of centrifugal, transducer of pressure as well measurement instrumentations are constructed and designed for this study. A data acquisition system (hardware) as well its (software) have been developed into transferring the signal than transducer of pressure to the computer. The experimental work has been implemented through measuring the variation of static pressure as well fluctuation of pressure for two cases of the impeller (with one groove and with two grooves). Static pressure has been taken in different points arranged onto the frontal-wall of a volute casing along one track for two cases of the impeller. This track is angular track about the impeller. The results of experimental show that the fluctuations of pressure for different mass flow rates are nature of non-periodical and the mass flow rates decrease with the fluctuations of pressure increase. Also, the results indicate that the impeller with two grooves show high mass flow rates comparison with the impeller with one groove. Simulation of numerical has been implemented onto blower of centrifugal to analysis both field of flow as well fluctuations of pressure through using ANSYS (FLUENT 15). The simulation of numerical has been carried out through solve the continuity as well momentum equations with the moving reference framework technicality inside a blower. The numerical simulation results show good agreement with the results of experimental.


Author(s):  
Matteo Checcucci ◽  
Michele Becciani ◽  
Juri Bellucci ◽  
Alessandro Bianchini ◽  
Giovanni Ferrara ◽  
...  

Turbocharged engines are setting themselves as the present standard in case of high-performance engines for sport applications. The coupling of a turbomachine with an internal combustion engine poses, however, some serious challenges, especially regarding the time lags and the transitory flow conditions. In particular, focus is presently being paid to the acceleration phase of these sport vehicles, where the mass flow is much lower than that attended at maximum efficiency condition and the transitory response of the turbocharger becomes pivotal to provide promptly high compression ratios to the engine. In this view, the global optimization process of new turbochargers must be oriented not only at maximizing the aerodynamic efficiency at the best design point but also at providing good efficiency at low mass flow rates, combined with a reduced inertia to enable fast acceleration. In the study, a multi-objective methodological approach is presented aimed at designing the turbine of a high-performance turbocharged engine based on the following requirements: 1) high efficiency at the design point; 2) good efficiency at low mass flow rates, typical of the acceleration phase; 3) reduced inertia; 4) overall aerodynamic design adaptable with constructive constraints. In doing so, some design considerations are also provided, pointing out the different design choices that can be made in a design strategy focused either on maximum efficiency or on the minimization of the system inertia. The aerodynamic optimization has been carried out with an in-house CFD 3D code, while the turbine coupling with the engine has been obtained by embedding the aerodynamic maps into the 1D engine model. The analysis showed that the new focus on the transitory response modified substantially the conventional design of the turbine, leading to new geometries able to improve notably the overall performance of the turbocharger.


2021 ◽  
Author(s):  
Manas Madasseri Payyappalli ◽  
A. M. Pradeep

Abstract In this experimental study, we investigate the fundamental behaviour of a low speed contra-rotating fan and describes the reasons leading to the instabilities in the fan at low mass flow rates. A contra-rotating fan is a possible alternative to conventional fans and has potential aerodynamic advantages. This study identifies certain features that are unique to a contra-rotating configuration. Rotor-1 and rotor-2 behaves differently at low mass flow rates. Though rotor-1 is stable up to low mass flow rates, rotor-2 enters into an unstable mode of operation at mass flow rates close to the design mass flow rate. The critical region where the instability arise in rotor-1 is its tip and in rotor-2 is its hub. The instability is also found to change the structure as it propagates along the annulus. It is identified that the presence of rotor-2 downstream of rotor-1 under-loads rotor-1 and thus significantly affects the loading on rotor-1. The instability arises due to the tip-leakage vortex at high frequencies and due to modal waves at low frequencies. The study thus identifies the major regions of the rotors which are the sources of instabilities and also identifies the process of transition to instability in the contra-rotating fan.


Sign in / Sign up

Export Citation Format

Share Document