Experimental and Numerical Investigation of Different Rectangular Volute Geometries for Large Radial Compressors

Author(s):  
Michael Bartelt ◽  
Thomas Kwitschinski ◽  
Thomas Ceyrowsky ◽  
Daniel Grates ◽  
Joerg R. Seume

Increases on mass flow rates of modern radial process compressors result on larger machine components. In particular, the dimensions of the outlet volutes increase strongly, resulting in disproportionately large machines whose technical feasibility is restricted due to technological and economical reasons. A resulting aim is to design modern radial compressors much more compact, while improving the efficiency and the pressure ratio. Therefore, the present experimental investigation addresses the compressor behaviour for reduced dimensions of rectangular volutes. Furthermore, the experimental setups are numerically modelled and different operating points are simulated with a commercial CFD-Code. A rectangular, external reference volute is equipped with differently shaped blockage-inlays and the global compressor parameters are measured for all variants. Additionally, the pressure and velocity distributions of the local flow field are determined experimentally for varying mass flow ratios at different circumferentially distributed volute layers. The decrease of the volute cross-section results in a reduction of the compressor map width especially at high mass flow rates. Recommendations are given for designing compact volutes of large radial compressors.

2005 ◽  
Vol 3 (1) ◽  
pp. 45-50 ◽  
Author(s):  
M. McGarry ◽  
L. Grega

The mass flow distribution and local flow structures that lead to areas of reactant starvation are explored for a small power large active area PEM fuel cell. A numerical model was created to examine the flow distribution for three different inlet profiles; blunt, partially developed, and fully developed. The different inlet profiles represent the various distances between the blower and the inlet to the fuel cell and the state of flow development. The partially and fully developed inlet profiles were found to have the largest percentage of cells that are deficient, 20% at a flow rate of 6.05 g/s. Three different inlet mass flow rates (stoichs) were also examined for each inlet profile. The largest percent of cells deficient in reactants is 27% and occurs at the highest flow rate of 9.1 g/s (3 stoichs) for the partially and fully developed turbulent profiles. In addition to the uneven flow distribution, flow separation occurs in the front four channels for the blunt inlet profile at all flow rates examined. These areas of flow separation lead to localized reactant deficient areas within a channel.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Anna Avramenko ◽  
Alexey Frolov ◽  
Jari Hämäläinen

The presented research demonstrates the results of a series of numerical simulations of gas flow through a single-stage centrifugal compressor with a vaneless diffuser. Numerical results were validated with experiments consisting of eight regimes with different mass flow rates. The steady-state and unsteady simulations were done in ANSYS FLUENT 13.0 and NUMECA FINE/TURBO 8.9.1 for one-period geometry due to periodicity of the problem. First-order discretization is insufficient due to strong dissipation effects. Results obtained with second-order discretization agree with the experiments for the steady-state case in the region of high mass flow rates. In the area of low mass flow rates, nonstationary effects significantly influence the flow leading stationary model to poor prediction. Therefore, the unsteady simulations were performed in the region of low mass flow rates. Results of calculation were compared with experimental data. The numerical simulation method in this paper can be used to predict compressor performance.


Author(s):  
Edward P. Childs ◽  
Dimitri Deserranno ◽  
Akshay Bagi

Abstract The application of Surrogate-Based Optimization (SBO) to the industrial design process for a radial compressor with two operating points is described. The design specification includes two operating points at mass flow rates differing by a factor of three, and efficiency and pressure ratio targets for each point. The base case, while roughly sized from 1D analysis, fails to achieve the pressure ratio targets. In this paper, the optimization focusses on correcting the two speed-line map of total to static pressure ratio vs. mass flow rate. “Smart parameterization”, combining independent and dependent geometric parameters, and yielding reasonable geometries for most input combinations, coupled with efficient SBO, with separate models for response surface modeling and failure prediction, yields a design achieving the targets in just 57 CFD runs. FINE/Turbo [1] is used as the CFD analysis code and FINE/Design3D [2] and MINAMO [3] as the multi-objective optimizer.


1969 ◽  
Vol 35 (3) ◽  
pp. 599-608 ◽  
Author(s):  
J. Daniel Stewart

The local and average mass flow rates for nearly free molecular flow through a two-dimensional slit are determined for several tank pressure ratios. The equilibrium gas in the two tanks and the container walls are assumed to be at the same temperature and the Willis iterative method with the Bhatnager-Gross-Krook model is used for the analysis. The results for an infinite pressure ratio are also presented in order to illustrate the effects of a finite pressure ratio.


Author(s):  
Jin Tang ◽  
Teemu Turunen-Saaresti ◽  
Arttu Reunanen ◽  
Juha Honkatukia ◽  
Jaakko Larjola

Numerical analysis is conducted for the 3-dimensional impeller and vaneless diffuser of a small centrifugal compressor. The influence of impeller tip clearance is investigated. A Navier-Stokes flow solver Finflo has been applied for the simulation. A practical real gas model has been generated for the calculation. Simulations with different sizes of tip clearance at different mass flow rates have been made. The results are compared to experimental results at a certain tip clearance and one operating point. Reasonable agreement has been obtained. The ideal gas model has also been applied to compare with the real gas model. The numerical results show that tip clearance has a significant effect on the performance of a small centrifugal compressor. As the size of tip clearance increases, both the pressure ratio and the efficiency decrease. The decreasing rate of efficiency is higher at higher mass flow rates and lower at lower mass flow rates. The input power of the compressor hardly changes with different sizes of tip clearance, but increases as the mass flow rate increases. The incidence of impeller and flow angle at the exit of the impeller increase as the size of tip clearance increases. Correlations of the size of tip clearance with the efficiency drop and change of flow angle at the exit of impeller are given. The detailed flow distribution shows that as the size of tip clearance increases, the tangential leaking flow at the tip clearance makes the low velocity flow region grow larger and move from the suction-shroud corner to the center of the flow channel. The main flow at the pressure side is compressed and accelerated. Therefore the uniformity of the flow in the whole channel decreases. The detailed flow distribution also shows that the leaking flow is stronger at higher mass flow rates.


Author(s):  
Jason Walkingshaw ◽  
Georgios Iosifidis ◽  
Tobias Scheuermann ◽  
Dietmar Filsinger ◽  
Nobuyuki Ikeya

As a means of meeting ever increasing emissions and fuel economy demands car manufacturers are using aggressive engine downsizing. To maintain the power output of the engine turbocharging is typically used. Due to the miss-match of the mass flow characteristics of the engine to the turbocharger, at low engine mass flow rates, the turbocharger can suffer from slow response known as “Turbolag”. Mono-scroll turbines are capable of providing good performance at high mass flow rates and in conjunction with low inertia mixed flow turbines can offer some benefits for transient engine response. With a multi-entry system the individual volute sizing can be matched to the single mass flow pulse from the engine cylinders. The exhaust pulse energy can be better utilised by the turbocharger turbine improving turbocharger response, while the interaction of the engine exhaust pulses can be better avoided, improving the scavenging of the engine. The behaviour of a mono-scroll turbocharger with the engine using engine simulation tools has been well established. What requires further investigation is the comparison with multi-entry turbines. CFD (Computational Fluid Dynamics) has been used to examine the single admission behaviour of a twin and double scroll turbine. Turbocharger gas stand maps of the multi-entry turbines have been measured at full and single admission. This data has been used in a 0D engine model. In addition, the turbine stage has been tested on the engine and a validation of the engine model against the engine test data is presented. Using the validated engine model a comparison has been made to understand the differences in the sizing requirements of the turbine and the interaction of the mono-scroll and multi-entry turbines with the engine. The impact of the different efficiency and mass flow rate trends of the mono and multi-entry turbochargers are discussed and the trade-offs between the design configurations regarding on engine behaviour are investigated.


2021 ◽  
Vol 8 (1) ◽  
pp. F1-F10
Author(s):  
E. Nogueira

The work analyzes the influence of the number of passes in a shell and tubes condenser heat exchanger, with an inlet pressure of R134a refrigerant in the shell equal to 1.2 MPa. The fluid that circulates in the tubes is water or water-based nanofluid with a fraction of aluminum oxide nanoparticles (Al2O3), and the methodology used subdivides the heat exchanger into three distinct regions: the overheated region, the saturated region, and the subcooled region. The main parameters used to analyze the thermal performance of the heat exchanger were efficiency and effectiveness. Efficiency in the superheated steam region is close to 1.0. There is scope for increasing thermal effectiveness, which can be improved with more significant passes in the tube. The saturated steam region process is efficient for lower mass flow rates of the fluid in the tube, but it is ineffective. However, it is highly effective for high mass flow rates. There is ample scope for increasing effectiveness in the subcooled region. Still, the fluid inlet temperature in the pipe and the work refrigerant pressure are the limiting factors for greater heat exchange in the subcooled region.


Author(s):  
Muna S. Kassim ◽  
Fouad A. Saleh ◽  
Alaa Th. Aliwi

Experimental and numerical investigation to study the influence of add (one groove and two grooves) to the unshroud impeller onto the rotating stall as well fluctuations of pressure at a high speed blower of centrifugal. Experimental test rig which includes blower of centrifugal, transducer of pressure as well measurement instrumentations are constructed and designed for this study. A data acquisition system (hardware) as well its (software) have been developed into transferring the signal than transducer of pressure to the computer. The experimental work has been implemented through measuring the variation of static pressure as well fluctuation of pressure for two cases of the impeller (with one groove and with two grooves). Static pressure has been taken in different points arranged onto the frontal-wall of a volute casing along one track for two cases of the impeller. This track is angular track about the impeller. The results of experimental show that the fluctuations of pressure for different mass flow rates are nature of non-periodical and the mass flow rates decrease with the fluctuations of pressure increase. Also, the results indicate that the impeller with two grooves show high mass flow rates comparison with the impeller with one groove. Simulation of numerical has been implemented onto blower of centrifugal to analysis both field of flow as well fluctuations of pressure through using ANSYS (FLUENT 15). The simulation of numerical has been carried out through solve the continuity as well momentum equations with the moving reference framework technicality inside a blower. The numerical simulation results show good agreement with the results of experimental.


Author(s):  
Julia E. Stephens ◽  
Sameer Kulkarni

Abstract Advancements in core compressor technologies are necessary for next generation, high Overall Pressure Ratio (OPR) turbofan engines. High pressure compressors (HPCs) for future engines are being designed with exit corrected mass flow rates less than 2.25 kg/s (5 lbm/s). In order to accurately measure the performance of these advanced designs, high accuracy measurements are needed in test facilities. The W7 High Speed Multistage Axial Compressor Facility at NASA Glenn Research Center has been used to acquire data for advanced compressor designs. This facility utilizes an advanced differential pressure flow meter called a V-Cone. The facility has historically tested components with physical mass flow rates in the range of 27 to 45 kg/s (60 to 100 lbm/s). As such, when the V-Cone was calibrated prior to installation, the calibrations focused on higher mass flow rates, and uncertainties in that regime range from 0.5% to 0.85%. However, for low mass flow rates under 9 kg/s (20 lbm/s), expected in tests of advanced high OPR HPCs rear stages, the uncertainties of the V-Cone exceed 2.5%. To address this, using a method similar to that utilized by the National Institute of Standards and Technology, an array of Critical Flow Venturi Nozzles (CFVs) was installed in the W7 test section and used to calibrate the V-Cone in 0.5 kg/s (1 lbm/s) increments up to 10.5 kg/s (23 lbm/s). This effort details the measurements and uncertainties associated with this calibration which resulted in a final uncertainty of the V-Cone measurements under 1%.


Author(s):  
Dmytro M. Voytovych ◽  
Guoping Xia ◽  
Chenzhou Lian ◽  
Charles L. Merkle

The flow analysis around blades of a transonic fan is presented for both clean and radially distorted inlets. Computations are shown for four-blade passages that are accomplished with a second order accurate code using a k-ω turbulence model. The mass flow rate along a speed line is controlled by varying a choked nozzle downstream of the fan. The results show good agreement with data for three speed lines. In the near-stall region, the flow first becomes unsteady and then unstable with the unsteadiness increasing at lower speeds. The four-blade simulations remained stable to lower mass flow rates than the single-blade simulations. In the near-stall vicinity, tip vortex breakdown occurred creating a low momentum zone near the blade tip on the pressure side that grew as the mass flow was decreased until it eventually blocked the passage. The presence of distortion reduced the operational range and moved the stall line to higher mass flow rates. At high speeds distortion reduced both the mass flow rate and total pressure ratio while at lower speeds, the choking mass flow rate was reduced, but the total pressure ratio was slightly improved. The flow separation near the hub on the suction side was caused by the distortion. Its size was decreasing with rotational speed.


Sign in / Sign up

Export Citation Format

Share Document