Loss Audit of a Turbine Stage

Author(s):  
Sungho Yoon ◽  
Thomas Vandeputte ◽  
Hiteshkumar Mistry ◽  
Jonathan Ong ◽  
Alexander Stein

In order to achieve high aerodynamic efficiency of a turbine stage, it is crucial to identify the source of aerodynamic losses and understand the associated loss generation mechanisms. This helps a turbine designer to maximize the performance of the turbine stage. It is well known that aerodynamic losses include profile, endwall, cooling/mixing loss, leakage, and trailing edge loss components. However, it is not a trivial task to separate one from the others because different loss sources occur concurrently and they interact with each other in a machine. Consequently, designers tend to rely on various empirical correlations to get an approximate estimate of each aerodynamic loss contribution. In this study, a systematic loss audit of an uncooled turbine stage has been undertaken by conducting a series of numerical experiments. By comparing entropy growth across the turbine stage, aerodynamic losses are broken down within the stator, rotor, and inter-bladerow gap. Furthermore, losses across each blade row are broken down into profile, leakage, endwall and trailing edge losses. The effect of unsteady interaction due to the relative motion of the stator and the rotor was also identified. For the examined turbine stage, trailing edge losses of the rotor dominated, contributing to more than a third of the total aerodynamic loss. The profile loss across the stator and the rotor, unsteady loss between the stator and the rotor, and the stator endwall loss were also identified to be significant loss sources for this turbine stage. The design implications of the findings are discussed.

2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Sungho Yoon ◽  
Thomas Vandeputte ◽  
Hiteshkumar Mistry ◽  
Jonathan Ong ◽  
Alexander Stein

In order to achieve high aerodynamic efficiency of a turbine stage, it is crucial to identify the source of aerodynamic losses and understand the associated loss generation mechanisms. This helps a turbine designer to maximize the performance of the turbine stage. It is well known that aerodynamic losses include profile, endwall, cooling/mixing loss, leakage, and trailing edge loss components. However, it is not a trivial task to separate one from the others because different loss sources occur concurrently and they interact with each other in a machine. Consequently, designers tend to rely on various empirical correlations to get an approximate estimate of each aerodynamic loss contribution. In this study, a systematic loss audit of an uncooled turbine stage has been undertaken by conducting a series of numerical experiments. By comparing entropy growth across the turbine stage, aerodynamic losses are broken down within the stator, rotor, and interblade row gap. Furthermore, losses across each blade row are broken down into profile, leakage, endwall, and trailing edge losses. The effect of unsteady interaction due to the relative motion of the stator and the rotor was also identified. For the examined turbine stage, trailing edge losses of the rotor were dominated, contributing to more than a third of the total aerodynamic loss. The profile loss across the stator and the rotor, unsteady loss between the stator and the rotor, and the stator endwall loss were also identified to be the significant loss sources for this turbine stage. The design implications of the findings are discussed.


2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Özhan H. Turgut ◽  
Cengiz Camci

This paper deals with the computational predictability of aerodynamic losses in a turbine nozzle guide vane (NGV) flow. The paper shows that three-dimensional (3D) computations of Reynolds-Averaged Navier Stokes (RANS) equations have the ability to adequately represent viscous losses in the presence of laminar flows, transitional regions, and fully turbulent flow areas in the NGV of an high pressure (HP) turbine stage. The Axial Flow Turbine Research Facility (AFTRF) used for the present experimental results has an annular NGV assembly and a 29-bladed HP turbine rotor spinning at 1330 rpm. The NGV inlet and exit Reynolds numbers based on midspan axial chord are around 300,000 and 900,000, respectively. A general purpose finite-volume 3D flow solver with a shear stress transport (SST) k–ω turbulence model is employed. The current computational study benefits from these carefully executed aerodynamic experiments in the NGV of the AFTRF. The grid independence study is performed with static pressure coefficient distribution at the midspan of the vane and the total pressure coefficient at the NGV exit. The effect of grid structure on aerodynamic loss generation is emphasized. The flow transition effect and the influence of corner fillets at the vane–endwall junction are also studied. The velocity distributions and the total pressure coefficient at the NGV exit plane are in very good agreement with the experimental data. This validation study shows that the effect of future geometrical modifications on the turbine endwall surfaces will be predicted reasonably accurately. The current study also indicates that an accurately defined turbine stage geometry, a properly prepared block-structured/body-fitted grid, a state-of-the-art transitional flow implementation, inclusion of fillets, and realistic boundary conditions coming from high-resolution turbine experiments are all essential ingredients of a successful turbine NGV aerodynamic loss quantification via computations. This validation study forms the basis for the successful future generation of nonaxisymmetric endwall surface modifications in AFTRF research efforts.


1980 ◽  
Vol 102 (4) ◽  
pp. 964-970 ◽  
Author(s):  
S. Ito ◽  
E. R. G. Eckert ◽  
R. J. Goldstein

Experiments have been performed to measure the total pressure loss of the flow through a two-dimensional turbine cascade with “coolant” injection from a single row of holes on the suction or pressure side of the blades. The tests were performed in a low speed tunnel. Air and carbon dioxide were used as secondary fluids, the latter to provide a large density difference between the gas in the mainstream and the injected gas. Both gas streams had the same temperature. The measured pressure loss is in good agreement with analytical predictions based on a model introduced by Hartsel. The results thus provide information which can be incorporated in a program which predicts the influence of injection on the aerodynamic efficiency of a gas turbine.


Author(s):  
S. Friedrichs ◽  
H. P. Hodson ◽  
W. N. Dawes

The endwall film-cooling cooling configuration investigated by Friedrichs et al. (1996, 1997) had in principle sufficient cooling flow for the endwall, but in practice, the redistribution of this coolant by secondary flows left large endwall areas uncooled. This paper describes the attempt to improve upon this datum cooling configuration by redistributing the available coolant to provide a better coolant coverage on the endwall surface, whilst keeping the associated aerodynamic losses small. The design of the new, improved cooling configuration was based on the understanding of endwall film-cooling described by Friedrichs et al. (1996, 1997). Computational fluid dynamics were used to predict the basic flow and pressure field without coolant ejection. Using this as a basis, the above described understanding was used to place cooling holes so that they would provide the necessary cooling coverage at minimal aerodynamic penalty. The simple analytical modelling developed in Friedrichs et al. (1997) was then used to check that the coolant consumption and the increase in aerodynamic loss lay within the limits of the design goal. The improved cooling configuration was tested experimentally in a large scale, low speed linear cascade. An analysis of the results shows that the redesign of the cooling configuration has been successful in achieving an improved coolant coverage with lower aerodynamic losses, whilst using the same amount of coolant as in the datum cooling configuration. The improved cooling configuration has reconfirmed conclusions from Friedrichs et al. (1996, 1997); firstly, coolant ejection downstream of the three-dimensional separation lines on the endwall does not change the secondary flow structures; secondly, placement of holes in regions of high static pressure helps reduce the aerodynamic penalties of platform coolant ejection; finally, taking account of secondary flow can improve the design of endwall film-cooling configurations.


Author(s):  
Yun Zheng ◽  
Xiubo Jin ◽  
Hui Yang ◽  
Qingzhe Gao ◽  
Kang Xu

Abstract The numerical study is performed by means of an in-house CFD code to investigate the effect of circumferential nonuniform tip clearance due to the casing ovalization on flow field and performance of a turbine stage. A method called fast-moving mesh is used to synchronize the non-circular computational domain with the rotation of the rotor row. Four different layouts of the circumferential nonuniform clearance are calculated and evaluated in this paper. The results show that, the circumferential nonuniform clearance could reduce the aerodynamic performance of the turbine. When the circumferential nonuniformity δ reaches 0.4, the aerodynamic efficiency decreases by 0.58 percentage points. Through the analysis of the flow field, it is found that the casing ovalization leads to the difference of the size of the tip clearance in the circumferential direction, and the aerodynamic loss of the position of large tip clearance is greater than that of small tip clearance, which is related to the scale of leakage vortex. In addition, the flow field will become nonuniform in the circumferential direction, especially at the rotor exit, which will adversely affect the downstream flow field.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
N. J. Fiala ◽  
J. D. Johnson ◽  
F. E. Ames

A letterbox trailing edge configuration is formed by adding flow partitions to a gill slot or pressure side cutback. Letterbox partitions are a common trailing edge configuration for vanes and blades, and the aerodynamics of these configurations are consequently of interest. Exit surveys detailing total pressure loss, turning angle, and secondary velocities have been acquired for a vane with letterbox partitions in a large-scale low speed cascade facility. These measurements are compared with exit surveys of both the base (solid) and gill slot vane configurations. Exit surveys have been taken over a four to one range in chord Reynolds numbers (500,000, 1,000,000, and 2,000,000) based on exit conditions and for low (0.7%), grid (8.5%), and aerocombustor (13.5%) turbulence conditions with varying blowing rate (50%, 100%, 150%, and 200% design flow). Exit loss, angle, and secondary velocity measurements were acquired in the facility using a five-hole cone probe at a measuring station representing an axial chord spacing of 0.25 from the vane trailing edge plane. Differences between losses with the base vane, gill slot vane, and letterbox vane for a given turbulence condition and Reynolds number are compared providing evidence of coolant ejection losses, and losses due to the separation off the exit slot lip and partitions. Additionally, differences in the level of losses, distribution of losses, and secondary flow vectors are presented for the different turbulence conditions at the different Reynolds numbers. The letterbox configuration has been found to have slightly reduced losses at a given flow rate compared with the gill slot. However, the letterbox requires an increased pressure drop for the same ejection flow. The present paper together with a related paper (2008, “Letterbox Trailing Edge Heat Transfer—Effects of Blowing Rate, Reynolds Number, and External Turbulence on Heat Transfer and Film Cooling Effectiveness,” ASME, Paper No. GT2008-50474), which documents letterbox heat transfer, is intended to provide designers with aerodynamic loss and heat transfer information needed for design evaluation and comparison with competing trailing edge designs.


Author(s):  
F. Didier ◽  
R. De´nos ◽  
T. Arts

This experimental investigation reports the convective heat transfer coefficient around the rotor of a transonic turbine stage. Both time-resolved and time-averaged aspects are addressed. The measurements are performed around the rotor blade at 15%, 50% and 85% span as well as on the rotor tip and the hub platform. Four operating conditions are tested covering two Reynolds numbers and three pressure ratios. The tests are performed in the compression tube turbine test rig CT3 of the von Karman Institute, allowing a correct simulation of the operating conditions encountered in modern aero-engines. The time-averaged Nusselt number distribution shows the strong dependence on both blade Mach number distribution and Reynolds number. The time-resolved heat transfer rate is mostly dictated by the vane trailing edge shock impingement on the rotor boundary layer. The shock passage corresponds to a sudden heat transfer increase. The effects are more pronounced in the leading edge region. The increase of the stage pressure ratio causes a stronger vane trailing edge shock and thus larger heat transfer fluctuations. The influence of the Reynolds number is hardly visible.


Author(s):  
A. Yamamoto ◽  
R. Yanagi

Using five-hole pitot tubes, detailed flow measurements were made before, within and after a low-speed three-dimensional turbine stator blade row to obtain quantitative information on the aerodynamic loss mechanism. Qualitative flow visualization tests and endwall static pressure measurements were also made. An analysis of the tests revealed that many vortical flows promote loss generation. Within a large part of the cascade, a major loss process could be explained simply as the migration of boundary layer low energy fluids from surrounding walls (endwalls and blade surfaces) to the blade suction surface near the trailing edge. On the other hand, complexity exists after the cascade and in the vortical flows near the trailing edge. The strong trailing shedding vortices affect upstream flow fields within the cascade. Detailed flow surveys within the cascade under the effects of blade tip leakage flows are also included.


Author(s):  
F. J. Cunha ◽  
M. T. Dahmer ◽  
M. K. Chyu

The trailing edge section of modern high-pressure turbine airfoils is an area that requires a high degree of attention from turbine performance and durability standpoints. Aerodynamic loss near the trailing edge includes expansion waves, normal shocks and wake shedding. Thermal issues associated with trailing edge are also very complex and challenging. To maintain effective cooling ensuring metal temperature below design limit is particularly difficult, as it needs to be implemented in a relatively small area of the airfoil. To date little effort has been devoted to advancing the fundamental understanding of the thermal characteristics in airfoil trailing edge regions. Described in this paper are the procedures leading to closed-form, analytical solutions for temperature profile for four most representative trailing edge configurations. The configurations studied are: (1) solid wedge shape without discharge, (2) wedge with slot discharge, (3) wedge with discrete-hole discharge, and (4) wedge with pressure-side cutback slot discharge. Comparison among these four cases is made primarily in the context of airfoil metal temperature and resulting cooling effectiveness. Further discussed in the paper are the overall and detail design parameters for preferred trailing edge cooling configurations as they affect turbine airfoil performance and durability.


Sign in / Sign up

Export Citation Format

Share Document