Production and Development of Secondary Flows and Losses Within a Three Dimensional Turbine Stator Cascade

Author(s):  
A. Yamamoto ◽  
R. Yanagi

Using five-hole pitot tubes, detailed flow measurements were made before, within and after a low-speed three-dimensional turbine stator blade row to obtain quantitative information on the aerodynamic loss mechanism. Qualitative flow visualization tests and endwall static pressure measurements were also made. An analysis of the tests revealed that many vortical flows promote loss generation. Within a large part of the cascade, a major loss process could be explained simply as the migration of boundary layer low energy fluids from surrounding walls (endwalls and blade surfaces) to the blade suction surface near the trailing edge. On the other hand, complexity exists after the cascade and in the vortical flows near the trailing edge. The strong trailing shedding vortices affect upstream flow fields within the cascade. Detailed flow surveys within the cascade under the effects of blade tip leakage flows are also included.

Author(s):  
S. Friedrichs ◽  
H. P. Hodson ◽  
W. N. Dawes

The endwall film-cooling cooling configuration investigated by Friedrichs et al. (1996, 1997) had in principle sufficient cooling flow for the endwall, but in practice, the redistribution of this coolant by secondary flows left large endwall areas uncooled. This paper describes the attempt to improve upon this datum cooling configuration by redistributing the available coolant to provide a better coolant coverage on the endwall surface, whilst keeping the associated aerodynamic losses small. The design of the new, improved cooling configuration was based on the understanding of endwall film-cooling described by Friedrichs et al. (1996, 1997). Computational fluid dynamics were used to predict the basic flow and pressure field without coolant ejection. Using this as a basis, the above described understanding was used to place cooling holes so that they would provide the necessary cooling coverage at minimal aerodynamic penalty. The simple analytical modelling developed in Friedrichs et al. (1997) was then used to check that the coolant consumption and the increase in aerodynamic loss lay within the limits of the design goal. The improved cooling configuration was tested experimentally in a large scale, low speed linear cascade. An analysis of the results shows that the redesign of the cooling configuration has been successful in achieving an improved coolant coverage with lower aerodynamic losses, whilst using the same amount of coolant as in the datum cooling configuration. The improved cooling configuration has reconfirmed conclusions from Friedrichs et al. (1996, 1997); firstly, coolant ejection downstream of the three-dimensional separation lines on the endwall does not change the secondary flow structures; secondly, placement of holes in regions of high static pressure helps reduce the aerodynamic penalties of platform coolant ejection; finally, taking account of secondary flow can improve the design of endwall film-cooling configurations.


Author(s):  
Gregory J. Hebert ◽  
William G. Tiederman

The effect of periodic rotor wakes on the secondary flow structure in a turbine stator cascade was investigated. A mechanism simulated the wakes shed from rotor blades bypassing cylindrical rods across the inlet to a linear cascade installed in a recirculating water flow loop. Velocity measurements showed a passage vortex, similar to that seen in steady flow, during the time associated with undisturbed fluid. However, as the rotor wake passed through the blade row, a large crossflow toward the suction surface was observed in the midspan region. This caused the development of two large areas of circulation between the midspan and endwall regions, significantly distorting and weakening the passage vortices.


1986 ◽  
Author(s):  
M. Govardhan ◽  
N. Venkatrayulu ◽  
D. Prithvi Raj

The paper presents the results of three dimensional flow measurements behind the trailing edges of an impulse turbine blade row of 120° deflection in an annular cascade. The entry boundary layer thickness was systematically varied on the hub and casing walls separately and its effect on secondary flows and losses is investigated. With the increase of entry boundary layer thickness, it has been found that (i) the contours of local loss coefficient show that the magnitude of the hub loss core increased, (ii) the loss cores near the hub and casing wall are convected away from the walls, (iii) the spanwise variation of the pitchwise averaged losses indicate that the position of large loss peak near the hub wall remains the same, but the magnitude of the loss increases, (iv) the exit static pressure increases and the exit velocity in general decreases, (v) the degree of underturning of flow increases and (vi) the net secondary losses do not change appreciably.


Author(s):  
Xueying Li ◽  
Jing Ren ◽  
Hongde Jiang

Phantom cooling is defined as the cooling redistribution on airfoil surfaces and endwalls due to airfoil cooling discharges and leakages. Understanding of this effect has become especially critical in recent years, because of the restricted amount of cooling air for the achievement of higher efficiency. The phantom cooling effect of the first stage nozzle trailing edge discharge on the first stage blade surfaces and platform are studied numerically with URANS. Both time-dependent and time-averaged cooling effectiveness distributions on the rotor under the influence of vane trailing edge discharge are presented with different discharge velocity ratios. The results show that the nozzle trailing edge ejection affects the suction and pressure side cooling of the blade as well as the platform. The effects on the triangular zones of suction surface are evident, especially the bottom and top zones which are better cooled. Under the influence of passage secondary flows and rotating, different coolant discharge velocity ratios which resulted in different inlet angles have an effect on the phantom cooling distribution. In general, the cooling air discharged from the trailing edge of the first stage nozzle influences the temperature distribution on the blade, which can substantially improve the cooling efficiency in the bottom triangular zone. This suggests that accounting for phantom cooling can improve the cooling design and if actively controlled save cooling flow.


2000 ◽  
Vol 123 (2) ◽  
pp. 274-280 ◽  
Author(s):  
Sang Woo Lee ◽  
Seong Kuk Joo ◽  
Joon Sik Lee

Presented are three-dimensional mean velocity components and aerodynamic loss data inside circular injection holes. The holes are normally oriented to a crossflow and each hole has a sharp square-edged inlet. Because of their importance to flow behavior, three different blowing ratios, M=0.5, 1.0, and 2.0, and three hole length-to-diameter ratios, L/D=0.5, 1.0, and 2.0, are investigated. The entry flow is characterized by a separation bubble, and the exit flow is characterized by direct interaction with the crossflow. The uniform oncoming flow at the inlet undergoes a strong acceleration and a subsequent gradual deceleration along a converging–diverging flow passage formed by the inlet separation bubble. After passing the throat of the converging–diverging passage, the potential core flow, which is nearly axisymmetric, decelerates on the windward side, but tends to accelerate on the leeward side. The presence of the crossflow thus reduces the discharge of the injectant on the windward side, but enhances its efflux on the leeward side. This trend is greatly accentuated at M=0.5. In general, there are strong secondary flows in the inlet and exit planes of the injection hole. The secondary flow within the injection hole, on the other hand, is found to be relatively weak. The inlet secondary flow is characterized by a strong inward flow toward the injection-hole center. However, it is not completely directed inward since the crossflow effect is superimposed on it. Past the throat, secondary flow is observed such that the leeward velocity component induced by the crossflow is superimposed on the diverging flow. Short L/D usually results in an exit discharging flow with a steep velocity gradient as well as a strong deceleration on the windward side, as does low M. The aerodynamic loss inside the injection hole originates from the inlet separation bubble, wall friction and interaction of the injectant with the crossflow. The first one is considered as the most dominant source of loss, even in the case of L/D=2.0. At L/D=0.5, the first and third sources are strongly coupled with each other. Regardless of L/D, the mass-averaged aerodynamic loss coefficient has an increasing tendency with increasing M.


1995 ◽  
Vol 117 (4) ◽  
pp. 553-561 ◽  
Author(s):  
A. Yamamoto ◽  
R. Murao ◽  
Y. Suzuki ◽  
Y. Aoi

Detailed flow measurements were made to study cascade interaction of turbine stator and rotor, using two linear cascades installed in series. The upstream cascade was moved to several places in the cascade pitchwise direction in order to change the relative location between the two cascades, and measurements were made in the downstream cascade. The result shows that the net total pressure loss generated in the downstream cascade becomes maximum when wakes of the upstream cascade pass the suction side of the downstream cascade passage, while the tip leakage loss generated in the downstream cascade does not change with the relative location of the cascades. The upstream cascade wakes interact with the secondary flows and most strongly with the endwall flow in the downstream cascade passage, making the loss distributions in the cascades fairly unsteady.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1673
Author(s):  
Yumeng Tang ◽  
Yangwei Liu

Mach number effects on loss and loading are evaluated in both the datum and slotted compressor profiles under a wide range of incidences based on two-dimensional (2D) computational fluid dynamic (CFD) simulations. First, total pressure loss and loading abilities are compared. Then, three kinds of deficit thickness are defined and evaluated, and a correlation is made between the loading and the momentum deficit thickness at the profile trailing edge. Finally, the nondimensionalized destruction of mean mechanical energy and dissipation function are employed to analyze the loss mechanism. The slotted profile broadens the low loss range towards the positive incidence range. The slotted profile allows a higher diffusion factor (DF) than the datum profile. It is hard to distinguish failure simply based on the DF values, whereas the Zweifel loading coefficient connects well with the low momentum deficit in the profile trailing edge. The peak of the V-shaped distributions in the Ψ - θ d e f plot could better suggest the design condition and determine the correct operating range despite the occurrence of bulk separation. The slotted profile gains the ability of the boundary layer flow near the suction surface to resist the adverse pressure gradient, hence, a reduced shear thickness and a uniformed downstream flow field is obtained.


Author(s):  
A. Corsini ◽  
F. Rispoli

The role that forward sweep plays in the aerodynamics of subsonic axial fan rotor is herein discussed, with emphasis on the combined effects of non-uniform three-dimensional work distribution and modified stacking lines. To study blade forward sweep effects numerical investigations have been undertaken on highly loaded fans of non-free vortex design, with ideal total head rise coefficient typical of industrial application range. The results of two rotors with identical overall design parameters and, respectively, with 35-deg forward swept blades and unswept blades have been compared. The investigation has been carried-out using an accurate in-house developed multi-level parallel finite element RANS solver, with the adoption of a non-isotropic two-equation turbulence closure. The pay-off derived from the sweep technology has been assessed with respect to the operating range improvement. To this end the flow structure developing through the blade passages and downstream of the rotors as well as loss distributions have been analysed at three different operating conditions. The studies showed that the forward swept blade operates more efficiently in particular at low volume flows, with a delayed onset of stall. The analyses of three-dimensional flow structures showed that, sweeping forward the blade, the flow centrifugation on blade suction surface is reduced and non-free vortex spanwise secondary flows is attenuated. Moreover, reduced fluid mechanical losses have been also pointed out in rotor with swept blades.


1992 ◽  
Vol 114 (2) ◽  
pp. 304-311 ◽  
Author(s):  
K. R. Kirtley ◽  
T. A. Beach

The three-dimensional viscous flow in a low-speed centrifugal compressor stage is simulated using an average passage Navier–Stokes analysis. The impeller discharge flow is of the jet/wake type with low-momentum fluid in the shroud-pressure side corner coincident with the tip leakage vortex. This nonuniformity introduces periodic unsteadiness in the vane frame of reference. The effect of such deterministic unsteadiness on the time mean is included in the analysis through the average passage stress, which allows the analysis of blade row interactions. The magnitude of the divergence of the deterministic unsteady stress is of the order of the divergence of the Reynolds stress over most of the span from the impeller trailing edge to the vane throat. Although the potential effects on the blade trailing edge from the diffuser vane are small, strong secondary flows generated by the impeller degrade the performance of the diffuser vanes.


Author(s):  
Michele Marconcini ◽  
Filippo Rubechini ◽  
Andrea Arnone ◽  
Seiichi Ibaraki

The flow field of a high pressure ratio centrifugal compressor for turbocharger applications is investigated using a three-dimensional Navier-Stokes solver. The compressor is composed of a double-splitter impeller followed by a vaned diffuser. The flow field of the transonic open-shrouded impeller is highly three-dimensional, and it is influenced by shock waves, tip leakage vortices and secondary flows. Their interactions generate complex flow structures which are convected and distorted through the impeller blades. Both steady and unsteady computations are performed in order to understand the physical mechanisms which govern the impeller flow field while the operation ranges from choke to surge. Detailed Laser Doppler Velocimetry (LDV) flow measurements are available at various cross-sections inside the impeller blades at both design and off-design operating conditions.


Sign in / Sign up

Export Citation Format

Share Document