Numerical Investigation on Loss Mechanism and Performance Improvement for a Zero Inlet Swirl Turbine Rotor

Author(s):  
Wei Zhao ◽  
Qingjun Zhao ◽  
Xiuming Sui ◽  
Weiwei Luo ◽  
Jianzhong Xu

A zero inlet swirl turbine rotor (ZISTR) is originally presented as the first stage in a multistage vaneless counter-rotating turbine (MVCT), which only consists of 4 rotors without any vanes. The vanes upstream of a ZISTR are removed to reduce the turbine weight and length, as well as the viscous losses and coolants associated with vanes. However, due to the lack of inlet swirl the stagger angles for ZISTR blade profiles are high and the blade deflections are very small, resulting in almost straight cambers and very thin airfoils. The motivation of this paper is to reveal the overall performance and key loss sources of a ZISTR associated with its special blade profile, and provide corresponding optimization approaches for its practical usages. The 3D viscous numerical results show that the wake, the suction side trailing edge shock and the tip leakage flow have substantial influence on the rotor performance. To optimize the performance of a ZISTR, reducing blade solidity is proposed to decrease the viscous and shock losses by increasing the portion of the inviscid mainstream. Leaned blade is also presented to restrict the tip leakage flow by adjusting the axial position of stagnation points on the blade profile, obtaining an increase in efficiency of 0.9%. The off-design performance of the optimized rotor is also presented to show the effect of the blade lean on efficiency at various rotating speeds and back pressures.

Author(s):  
Wei Li ◽  
Wei-Yang Qiao ◽  
Kai-Fu Xu ◽  
Hua-Ling Luo

The tip leakage flow has significant effects on turbine in loss production, aerodynamic efficiency, etc. Then it’s important to minimize these effects for a better performance by adopting corresponding flow control. The active turbine tip clearance flow control with injection from the tip platform is given in Part-1 of this paper. This paper is Part-2 of the two-part papers focusing on the effect of five different passive turbine tip clearance flow control methods on the tip clearance flow physics, which consists of a partial suction side squealer tip (Partial SS Squealer), a double squealer tip (Double Side Squealer), a pressure side tip shelf with inclined squealer tip on a double squealer tip (Improved PS Squealer), a tip platform extension edge in pressure side (PS Extension) and in suction side (SS Extension) respectively. Combined with the turbine rotor and the numerical method mentioned in Part 1, the effects of passive turbine tip clearance flow controls on the tip clearance flow were sequentially simulated. The detailed tip clearance flow fields with different squealer rims were described with the streamline and the velocity vector in various planes parallel to the tip platform or normal to the tip leakage vortex core. Accordingly, the mechanisms of five passive controls were put in evidence; the effects of the passive controls on the turbine efficiency and the tip clearance flow field were highlighted. The results show that the secondary flow loss near the outer casing including the tip leakage flow and the casing boundary layer can be reduced in all the five passive control methods. Comparing the active control with the passive control, the effect brought by the active injection control on the tip leakage flow is evident. The turbine rotor efficiency could be increased via the rational passive turbine tip clearance flow control. The Improved PS Squealer had the best effect on turbine rotor efficiency, and it increased by 0.215%.


Author(s):  
Jin-sol Jung ◽  
Okey Kwon ◽  
Changmin Son

The flow leaking over the tip of a high pressure turbine blade generates significant aerodynamic losses as it mixes with the mainstream flow. This study investigates the effect of blade tip geometries on turbine performance with both steady RANS and unsteady URANS analyses. Five different squealer geometries for a high pressure turbine blade have been examined: squealer on pressure side, squealer on suction side, cavity squealer, cavity squealer with pressure side cutback, and cavity squealer with suction side cutback. With the case of the cavity squealer, three different squealer wall thickness are investigated for the wall thickness (w) of 1x, 2x and 4x of the tip gap (G). The unsteady flow analyses using CFX have been conducted to investigate unsteady characteristics of the tip leakage flow and its influence on turbine performances. Through the comparison between URANS analyses, detailed vortex and wake structures are identified and studied at different fidelities. It is found that the over tip leakage flow loss is affected by the tip suction side geometry rather than that of the pressure side geometry. The unsteady results have contributed to resolve the fundamentals of vortex structures and aerodynamic loss mechanisms in a high pressure turbine stage.


Author(s):  
Kai Zhou ◽  
Chao Zhou

Abstract Experimental and numerical methods were used to investigate the aerodynamic effects of a near-casing streamwise incoming vortex flow on the tip leakage flow of different tip geometries in an unshrouded high pressure turbine. A flat tip, a cavity tip and a suction-side winglet tip were investigated with quasi-steady method first. A swirl generator was used to produce the incoming vortex in a linear cascade. In the flat tip case, the incoming vortex interacts with the tip leakage flow and the two vortices gradually mix together. The tip leakage loss is reduced due to the streamwise momentum supplement within the tip leakage vortex core. For the cavity tip, the tip leakage vortex appears at a location relatively downstream in the blade passage compared to the flat tip and no evident vortex interaction is observed. The incoming vortex causes extra viscous dissipation within the blade passage and increases the aerodynamic loss for the cavity tip. For the winglet tip, the extension of the suction side winglet tends to push the incoming vortex and the tip leakage vortex move and mix together, thus reducing the loss. Then the effects of periodic unsteady vortex transportations were investigated by conducting unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations. The incoming vortex is stretched as it transports downstream. The unsteady incoming vortex is easier to interact with the tip leakage vortex for the winglet tip. As a result, the winglet tip is the most efficient tip design with unsteady incoming flow among the three tips, and achieves 3.7% reduction of mixed-out loss coefficient compared to the flat tip, larger than 2.8% reduction in the uniform inlet condition. The detailed loss mechanism is discussed in the paper.


2021 ◽  
Vol 143 (8) ◽  
Author(s):  
Kai Zhou ◽  
Chao Zhou

Abstract Experimental and numerical methods were used to investigate the aerodynamic effects of a near-casing streamwise incoming vortex flow on the tip leakage flow of different tip geometries in an unshrouded high-pressure turbine. A flat tip, a cavity tip, and a suction side winglet tip were investigated with the quasi-steady method first. A swirl generator was used to produce the incoming vortex in a linear cascade. In the flat tip case, the incoming vortex interacts with the tip leakage flow and the two vortices gradually mix together. The tip leakage loss is reduced due to the streamwise momentum supplement within the tip leakage vortex core. For the cavity tip, the tip leakage vortex appears at a location relatively downstream in the blade passage compared with the flat tip and no evident vortex interaction is observed. The incoming vortex causes extra viscous dissipation within the blade passage and increases the aerodynamic loss for the cavity tip. For the winglet tip, the extension of the suction side winglet tends to push the incoming vortex and the tip leakage vortex move and mix together, thus reducing the loss. Then, the effects of periodic unsteady vortex transportations were investigated by conducting unsteady Reynolds-Averaged Navier–Stokes (URANS) simulations. The incoming vortex is stretched as it transports downstream. The unsteady incoming vortex is easier to interact with the tip leakage vortex for the winglet tip. As a result, the winglet tip is the most efficient tip design with unsteady incoming flow among the three tips and achieves a 3.7% reduction of mixed-out loss coefficient compared with the flat tip, larger than 2.8% reduction in the uniform inlet condition. The detailed loss mechanism is discussed in this paper.


Author(s):  
Cengiz Camci ◽  
Debashis Dey ◽  
Levent Kavurmacioglu

This paper deals with an experimental investigation of aerodynamic characteristics of full and partial-length squealer rims in a turbine stage. Full and partial-length squealer rims are investigated separately on the pressure side and on the suction side in the “Axial Flow Turbine Research Facility” (AFTRF) of the Pennsylvania State University. The streamwise length of these “partial squealer tips” and their chordwise position are varied to find an optimal aerodynamic tip configuration. The optimal configuration in this cold turbine study is defined as the one that is minimizing the stage exit total pressure defect in the tip vortex dominated zone. A new “channel arrangement” diverting some of the leakage flow into the trailing edge zone is also studied. Current results indicate that the use of “partial squealer rims” in axial flow turbines can positively affect the local aerodynamic field by weakening the tip leakage vortex. Results also show that the suction side partial squealers are aerodynamically superior to the pressure side squealers and the channel arrangement. The suction side partial squealers are capable of reducing the stage exit total pressure defect associated with the tip leakage flow to a significant degree.


Author(s):  
S. K. Krishnababu ◽  
H. P. Hodson ◽  
G. D. Booth ◽  
G. D. Lock ◽  
W. N. Dawes

A numerical investigation of the flow and heat transfer characteristics of tip leakage in a typical film cooled industrial gas turbine rotor is presented in this paper. The computations were performed on a rotating domain of a single blade with a clearance gap of 1.28% chord in an engine environment. This standard blade featured two coolant and two dust holes, in a cavity-type tip with a central rib. The computations were performed using CFX 5.6, which was validated for similar flow situations by Krishnababu et al., [18]. These predictions were further verified by comparing the flow and heat transfer characteristics computed in the absence of coolant ejection with computations previously performed in the company (SIEMENS) using standard in-house codes. Turbulence was modelled using the SST k-ω turbulence model. The comparison of calculations performed with and without coolant ejection has shown that the coolant flow partially blocks the tip gap, resulting in a reduction of the amount of mainstream leakage flow. The calculations identified that the main detrimental heat transfer issues were caused by impingement of the hot leakage flow onto the tip. Hence three different modifications (referred as Cases 1 to 3) were made to the standard blade tip in an attempt to reduce the tip gap exit mass flow and the associated impingement heat transfer. The improvements and limitations of the modified geometries, in terms of tip gap exit mass flow, total area of the tip affected by the hot flow and the total heat flux to the tip, are discussed. The main feature of the Case 1 geometry is the removal of the rib and this modification was found to effectively reduce both the total area affected by the hot leakage flow and total heat flux to the tip while maintaining the same leakage mass flow as the standard blade. Case 2 featured a rearrangement of the dust holes in the tip which, in terms of aero-thermal-dynamics, proved to be marginally inferior to Case 1. Case 3, which essentially created a suction-side squealer geometry, was found to be inferior even to the standard cavity tip blade. It was also found that the hot spots which occur in the leading edge region of the standard tip and all modifications contributed significantly to the area affected by the hot tip leakage flow and the total heat flux.


Author(s):  
J. Luo ◽  
B. Lakshminarayana

The 3-D viscous flowfield in the rotor passage of a single-stage turbine, including the tip-leakage flow, is computed using a Navier-Stokes procedure. A grid-generation code has been developed to obtain embedded H grids inside the rotor tip gap. The blade tip geometry is accurately modeled without any “pinching”. Chien’s low-Reynolds-number k-ε model is employed for turbulence closure. Both the mean-flow and turbulence transport equations are integrated in time using a four-stage Runge-Kutta scheme. The computational results for the entire turbine rotor flow, particularly the tip-leakage flow and the secondary flows, are interpreted and compared with available data. The predictions for major features of the flowfield are found to be in good agreement with the data. Complicated interactions between the tip-clearance flows and the secondary flows are examined in detail. The effects of endwall rotation on the development and interaction of secondary and tip-leakage vortices are also analyzed.


Author(s):  
Wei Li ◽  
Hongmei Jiang ◽  
Qiang Zhang ◽  
Sang Woo Lee

The over-tip-leakage (OTL) flow characteristics for a typical squealer tip of a high-pressure turbine blade, which consists of subsonic and transonic flow, have been numerically investigated in the present study, in comparison with the corresponding flat tip results. For the squealer tip employed, flow choking behavior still exists above the tip surface, even though the Mach number is lower and the transonic region is smaller than that for the flat tip. Detailed flow structure analysis shows that most of the fluid entering the squealer cavity is from the frontal leading edge region. The fluid migrates along the cavity and is ejected at various locations near the suction side rim. These fluids form a large subsonic flow zone under the supersonic flow passing over the tip gap which reduces the OTL flow flux. The squealer design works even in the presence of choked OTL flow. Comparisons between results from three different cavity depths with and without relative casing motion suggest that the over-tip-leakage flow flux has much dependence upon the cavity depth for the subsonic region, but is less sensitive to the depth for the transonic tip flow region. Such behavior has been confirmed with and without the existence of relative casing motion.


Sign in / Sign up

Export Citation Format

Share Document