The Effect of Transient Fuel Staging on Self-Excited Instabilities in a Multi-Nozzle Model Gas Turbine Combustor

Author(s):  
Wyatt Culler ◽  
Janith Samarasinghe ◽  
Bryan D. Quay ◽  
Domenic A. Santavicca ◽  
Jacqueline O’Connor

Combustion instability in gas turbines can be mitigated using active techniques or passive techniques, but passive techniques are almost exclusively used in industrial settings. While fuel staging, a common passive technique, is effective in reducing the amplitude of self-excited instabilities in gas turbine combustors at steady-state conditions, the effect of transients in fuel staging on self-excited instabilities is not well understood. This paper examines the effect of fuel staging transients on a laboratory-scale five-nozzle can combustor undergoing self-excited instabilities. The five nozzles are arranged in a four-around-one configuration and fuel staging is accomplished by increasing the center nozzle equivalence ratio. When the global equivalence ratio is φ = 0.70 and all nozzles are fueled equally, the combustor undergoes self-excited oscillations. These oscillations are suppressed when the center nozzle equivalence ratio is increased to φ = 0.80 or φ = 0.85. Two transient staging schedules are used, resulting in transitions from unstable to stable operation, and vice-versa. It is found that the characteristic instability decay times are dependent on the amount of fuel staging in the center nozzle. It is also found that the decay time constants differ from the growth time constants, indicating hysteresis in stability transition points. High speed CH* chemiluminescence images in combination with dynamic pressure measurements are used to determine the instantaneous phase difference between the heat release rate fluctuation and the combustor pressure fluctuation throughout the combustor. This analysis shows that the instability onset process is different from the instability decay process.

Author(s):  
Wyatt Culler ◽  
Xiaoling Chen ◽  
Stephen Peluso ◽  
Domenic Santavicca ◽  
Jacqueline O’Connor ◽  
...  

Combustion instability in gas turbines is often mitigated using fuel staging, a strategy where the fuel is split unevenly between different nozzles of a multiple-nozzle combustor. This work examines the efficacy of different fuel staging configurations by comparing axisymmetric and non-axisymmetric fuel staging in a four-around-one model gas turbine combustor. Fuel staging is accomplished by increasing the equivalence ratio of the center nozzle (axisymmetric staging) or an outer nozzle (non-axisymmetric staging). When the global equivalence ratio is ϕ = 0.70 and all nozzles are fueled equally, the combustor undergoes longitudinal, self-excited oscillations. These oscillations are suppressed when the center nozzle equivalence ratio is increased above ϕStaging = 0.79. This bifurcation equivalence ratio varies between ϕStaging = 0.86 and ϕStaging = 0.76 for the outer nozzles, and is attributed to minor hardware differences between each nozzle. High speed CH* chemiluminescence images in combination with dynamic pressure measurements are used to determine the instantaneous phase difference between the heat release rate fluctuation and the combustor pressure fluctuation throughout the combustor. This analysis shows that the staged flame has similar phase relationships for all staging configurations. It is found that axisymmetric staging can be as effective as non-axisymmetric staging; however, the aforementioned hardware variations can impact both the bifurcation equivalence ratio and the effectiveness of staging.


Author(s):  
J. D. Gounder ◽  
I. Boxx ◽  
P. Kutne ◽  
F. Biagioli ◽  
H. Luebcke

Gas turbine (GT) flames at lean operating conditions are susceptible to instabilities that can lead to unsteady operation, flame extinction, and thermoacoustic oscillations. High speed (10 kHz) laser and optical diagnostic techniques have been used to investigate the effect of fuel staging on the mechanisms involved in such instabilities and the overall performance of a gas turbine model combustor. The GT burner used in this study consists of coaxial swirlers which allow for fuel staging capability, where the fuel is varied from 100% to 20% fuel injection in the inner swirler. The burner is equipped with a combustion chamber with large quartz windows, allowing for the application of optical and laser diagnostics. Simultaneous high speed OH Planar Laser Induced Fluorescence (PLIF) and OH* chemiluminescence (CL) imaging, exhaust gas sampling and acoustic measurements were applied to characterize the flames and determine the operability limits of the combustor. Methane air flames at atmospheric pressure have been investigated at a constant thermal power of 58 kW. The global equivalence ratio was kept constant, while the fuel staging was varied. The bulk flow velocity at the exit plane was kept constant at 20 m/s. Simultaneous high speed particle image velocity (PIV) and OH PLIF measurements were performed at a repetition rate of 10 kHz on specifically chosen flames with a fixed staging and equivalence ratio. This paper will present the flame and the flow field structure resolved using the kHz measurement technique. The interaction between the velocity field and the flame front marked by the OH LIF will be presented. The mean PIV image provides the location of the inner and outer recirculation zones. The flame structure presented in this paper will also show the effectiveness of fuel mixing as the staging is varied. The changes in flame shape with variation in fuel staging is determined using the OH* chemiluminescence images. As the fuel flow in the inner swirler is reduced, the NOx and CO emissions also reduce and reach a minimum at a staging of 45% fuel being injected in the inner swirler. As fuel injection in the outer swirler increases beyond 60% the NOx and CO emissions start also increasing.


Author(s):  
Kousuke Isomura ◽  
Shin-ichi Togo ◽  
Kousuke Hikichi ◽  
Satoshi Goto ◽  
Shuji Tanaka

Hydro-inertia gas bearing is a type of static air bearing, which supports the rotor by suction force generated by supersonic flow in large bearing clearance [1]. A tool to analyze the flow inside the clearance of hydroinertia gas bearings have been developed, and validated by experiment. A tool to estimate the load capacity and the bearing stiffness of the hydroinertia gas bearing based on experimental data has also been developed. A micro spinner test rig has been fabricated to test an hydroinertia gas bearings designed by the developed tools, and stable operation of 4mm diameter shaft at 1,200,000 rpm has successfully been achieved. A micro-high-speed bearing test rig to test a rotor for micromachine gas turbine has been designed and fabricated. Current micromachine gas turbine’s configuration requires a rotor with 10mm diameter compressor and turbine impellers on each end of 4mm diameter shaft to operate stably at 870,000rpm. Based on the achievement of stable operation at the high-speed of 1,200,000 rpm, hydro-inertia gas bearing has been selected as a candidate for both the bearings for micromachine gas turbine. Currently, the rotor speed as high as 770,000rpm has been achieved in this test rig.


Author(s):  
Patrick Nau ◽  
Zhiyao Yin ◽  
Oliver Lammel ◽  
Wolfgang Meier

Phosphor thermometry has been developed for wall temperature measurements in gas turbines and gas turbine model combustors. An array of phosphors has been examined in detail for spatially and temporally resolved surface temperature measurements. Two examples are provided, one at high pressure (8 bar) and high temperature and one at atmospheric pressure with high time resolution. To study the feasibility of this technique for full-scale gas turbine applications, a high momentum confined jet combustor at 8 bar was used. Successful measurements up to 1700 K on a ceramic surface are shown with good accuracy. In the same combustor, temperatures on the combustor quartz walls were measured, which can be used as boundary conditions for numerical simulations. An atmospheric swirl-stabilized flame was used to study transient temperature changes on the bluff body. For this purpose, a high-speed setup (1 kHz) was used to measure the wall temperatures at an operating condition where the flame switches between being attached (M-flame) and being lifted (V-flame) (bistable). The influence of a precessing vortex core (PVC) present during M-flame periods is identified on the bluff body tip, but not at positions further inside the nozzle.


Author(s):  
Dominik Ebi ◽  
Peter Jansohn

Abstract Operating stationary gas turbines on hydrogen-rich fuels offers a pathway to significantly reduce greenhouse gas emissions in the power generation sector. A key challenge in the design of lean-premixed burners, which are flexible in terms of the amount of hydrogen in the fuel across a wide range and still adhere to the required emissions levels, is to prevent flame flashback. However, systematic investigations on flashback at gas turbine relevant conditions to support combustor development are sparse. The current work addresses the need for an improved understanding with an experimental study on boundary layer flashback in a generic swirl burner up to 7.5 bar and 300° C preheat temperature. Methane-hydrogen-air flames with 50 to 85% hydrogen by volume were investigated. High-speed imaging was applied to reveal the flame propagation pathway during flashback events. Flashback limits are reported in terms of the equivalence ratio for a given pressure, preheat temperature, bulk flow velocity and hydrogen content. The wall temperature of the center body along which the flame propagated during flashback events has been controlled by an oil heating/cooling system. This way, the effect any of the control parameters, e.g. pressure, had on the flashback limit was de-coupled from the otherwise inherently associated change in heat load on the wall and thus change in wall temperature. The results show that the preheat temperature has a weaker effect on the flashback propensity than expected. Increasing the pressure from atmospheric conditions to 2.5 bar strongly increases the flashback risk, but hardly affects the flashback limit beyond 2.5 bar.


2002 ◽  
Vol 39 (01) ◽  
pp. 1-11
Author(s):  
Julio A. Vergara ◽  
Chris B. McKesson

It has been about 40 years since nuclear-powered merchant ships were seriously discussed in the naval architecture community. But recent developments in commercial shipping include bigger, faster, and more powerful ships, where nuclear propulsion may be an option worth considering. The development of advanced ship designs opens an opportunity for high-speed maritime transportation that could create new markets and recover a fraction of the high value goods currently shipped only by air. One of the vessels being considered is FastShip, a large monohull ship that would require 250 MW in 5 gas turbine-waterjet units. An estimate of the operation cost of FastShip reveals that its success relies heavily, among other things, on the fuel price, a single factor that comprises more than one third of the total operating costs. The alternative, a nuclear FastShip, would save, per trip, almost 5000 tons of exposure to fuel price fluctuation, and about half of this savings would further be available for additional cargo and revenues. Nuclear power results in a more stable operation due to the relatively constant low price of nuclear fuel. The nuclear power option is suitable for high-power demand and long-haul applications and a reactor pack could be available within the decade. A candidate design would be the helium-cooled reactor, which has been revisited by several nuclear reactor design teams worldwide. For the FastShip a suggested plant would consist of two modular helium reactors, each one with two 50 MW helium turbines and compressors geared to waterjet pumps, plus a single 50 MW gas turbine. This vessel becomes more expensive to build but saves in fuel, and still provides margin for cost, weight and size optimization. This paper discusses general characteristics of a FastShip with such a nuclear power plant and also highlights the benefits, drawbacks, pending issues and further opportunities for nuclear-powered high-speed cargo ships.


2021 ◽  
Author(s):  
Austin Matthews ◽  
Anna Cobb ◽  
Subodh Adhikari ◽  
David Wu ◽  
Tim Lieuwen ◽  
...  

Abstract Understanding thermoacoustic instabilities is essential for the reliable operation of gas turbine engines. To complicate this understanding, the extreme sensitivity of gas turbine combustors can lead to instability characteristics that differ across a fleet. The capability to monitor flame transfer functions in fielded engines would provide valuable data to improve this understanding and aid in gas turbine operability from R&D to field tuning. This paper presents a new experimental facility used to analyze performance of full-scale gas turbine fuel injector hardware at elevated pressure and temperature. It features a liquid cooled, fiber-coupled probe that provides direct optical access to the heat release zone for high-speed chemiluminescence measurements. The probe was designed with fielded applications in mind. In addition, the combustion chamber includes an acoustic sensor array and a large objective window for verification of the probe using high-speed chemiluminescence imaging. This work experimentally demonstrates the new setup under scaled engine conditions, with a focus on operational zones that yield interesting acoustic tones. Results include a demonstration of the probe, preliminary analysis of acoustic and high speed chemiluminescence data, and high speed chemiluminescence imaging. The novelty of this paper is the deployment of a new test platform that incorporates full-scale engine hardware and provides the ability to directly compare acoustic and heat release response in a high-temperature, high-pressure environment to determine the flame transfer functions. This work is a stepping-stone towards the development of an on-line flame transfer function measurement technique for production engines in the field.


Author(s):  
R. P. op het Veld ◽  
J. P. van Buijtenen

This paper investigates the layout and achievable efficiencies of rotating components of a Helium gas turbine. This is done by making a preliminary design of the compressor and turbine needed for the power conversion in a combined heat and power plant with a 40 MWth nuclear high temperature reactor as a heat source. State of the art efficiency values of air breathing gas turbines are used for the first calculations. The efficiency level is corrected by comparing various dimensionless data of the Helium turbomachine with an air gas turbine of similar dimensions. A single shaft configuration with a high speed axial turbine will give highest performance and simple construction. If a generator has to be driven at a conventional speed, a free power turbine configuration must be chosen. The choice of the configuration depends among others on the cost and availability of the asynchrone generator and frequency convertor.


Author(s):  
Panteleimon Kazatzis ◽  
Riti Singh ◽  
Pericles Pilidis ◽  
Jean-Jacques Locquet

The power-speed requirements of warships and the poor part load efficiency of simple cycle gas turbines has given rise to the design of many ship installations where two types of gas turbines are used. A large type for high speed, at full power, and a small one for cruise. It is common to mount two units of each type. This design results in a large amount of bulky and heavy ducting, much more voluminous and heavy than the gas turbines themselves. The present paper outlines an investigation into a novel intercooled split-cycle with some deck mounted components. This reduces the requirement for internal ducts in the ships hull, essentially, to those needed by the cruise engine. The engine performance has been predicted and a comparison is carried out between a traditional installation and the one investigated. An estimate has been carried out of the flow conditions of the duct to assess the change in losses for operation in the cruise and the full power condition. The new scheme appears to be promising.


Author(s):  
Tadashi Kataoka ◽  
Teruyuki Nakajima ◽  
Takahiro Nakagawa ◽  
Nobuhiko Hamano ◽  
Saburo Yuasa

This paper describes an approach to utilize sewage digester gas as a fuel for gas turbines. Sewage digester gas is composed of about 60% methane and 39% carbon dioxide. To apply it as a gas turbine fuel requires optimizing the combustion system to improve the combustion efficiency, flame-holding characteristics, etc. This paper presents an approach whereby a mass-produced microturbine and its peripheral equipment can be converted for such application with a minimum of modification and without the use of extraordinary combustors. The approach is described whereby a recuperative cycle microturbine having rich-burn, quick-mix, lean-burn (RQL) combustor is started up with a high-Btu fuel and the fuel is switched to digester gas when the inlet-air has been preheated to 600K or higher. This approach has proven that reliable starting, stable operation from idling to the rated power output, and efficiency equivalent to that obtained with a high-Btu fuel, can be achieved by the microturbine utilizing sewage digester gas.


Sign in / Sign up

Export Citation Format

Share Document