Research on the Unsteady Flow in an Axial Flow Compressor Rotor Based on PVDF Piezoelectric-Film Sensor Array

Author(s):  
Jiqing Cong ◽  
Jianping Jing

The unsteady flow in an axial flow compressor rotor is responsible for noise generation and unexpected excitation of blade vibration; therefore, compressors may suffer from fatigue failure of blades and eventually become unable to operate. At present, a set of Kulite pressure transducers mounted on the casing wall is widely used to acquire the pressure field of unsteady flow. However, it will affect the compressor structure and it is physically impossible to mount at a small spacing to capture the variation of casing wall pressure precisely because of the size of transducers. For the requirement of measurement, a self-developed PVDF (polyvinylidene fluoride) piezoelectric-film sensor array measurement system was applied to measure and capture the pressure field distribution over the compressor rotor blade tip clearance. In this system, a multi-measuring points PVDF array, in which 40 measuring points was contained in a 70mm by 40mm rectangle area, was attached on the casing wall of the rotor blade tip. This new technique has great advantages over traditional measurement technique, such as wide frequency response, high space resolution, less impact on the compressor, easy installation and so on. Based on a multistage axial compressor rig test, the unsteady flow pattern on the casing wall was well captured by the PVDF array. And it is revealed in all measuring points that the resonance occurs all over the compressor is under one single frequency, and the pressure level of the acoustic resonance exceeds the level of the usually dominated blade passing frequency when close to the stability limit. At the same time, the acoustic resonance will be modulated with the blade passing frequency.

Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1404
Author(s):  
Jiqing Cong ◽  
Jianping Jing ◽  
Changmin Chen

Tip clearance flow in axial flow compressor is unavoidable and responsible for pressure losses and noise generation and influences the stability of the compressor. However, necessary flow measurement in the blade tip region is a great challenge due to the small gap width as well as the structure limitation. In this paper, a polyvinylidene fluoride (PVDF) piezoelectric-film sensor array is developed to capture the dynamic pressure field over the blade tip in an axial flow compressor. The PVDF sensor array with 40 evenly distributed sensing points is fabricated directly on a 30 μm thick aluminum-metalized polarized PVDF film through photolithography. Dynamic calibration of the sensor is accomplished using acoustic source as excitation and a microphone as a reference. The test pressure range is up to 3.5 kPa and the sampling frequency is 20 kHz. The sensor presents a high signal-to-noise ratio and good consistency with the reference microphone. Sensitivity, frequency response, linearity, hysteresis, repeatability as well as the influence of temperature are also investigated through the calibration apparatus. The calibration gives credence to the relevance and reliability of this sensor for the application in dynamic pressure field measurement. The sensor is then applied to an actual measurement in a compressor. The output of the PVDF sensor array is also compared with the results of common pressure transducers, and the features of the dynamic pressure filed are discussed. The results indicate that the PVDF sensor array is capable of the dynamic pressure field measurement over the blade tip, and superior to the conventional approaches in installation, spatial resolution, frequency response, and cost. These advantages indicate its potential broad application in pressure measurement, especially for the complex spatial surface or thin-walled structure, such as the blade surface and the thin casing wall of the compressor.


1977 ◽  
Vol 99 (1) ◽  
pp. 97-105 ◽  
Author(s):  
J. P. Gostelow

Measurements of the unsteady flow field over a rotor and within its wake are needed in the development of most turbomachines. The technique advocated is that of data acquisition by on-line computer, using the periodic passing of a blade as a phase reference. The phase-lock averaging process is described as is its use in reducing the noise of raw data traces. Measurements of the unsteady flow over a cascade and of the resulting boundary layer behavior are presented. The approach was used in interpreting the unsteady flow field of an axial-flow compressor rotor and the static pressure distribution over the rotor tip. Finally the application to centrifugal pumps is discussed, enabling the designer to obtain information on the suction pressures and the extent of any separated region.


2011 ◽  
Vol 2011 (0) ◽  
pp. _J051054-1-_J051054-5
Author(s):  
Hiroaki KIKUTA ◽  
Kazutoyo YAMADA ◽  
Satoshi Gunjishima ◽  
Goki OKADA ◽  
Yasunori HARA ◽  
...  

1985 ◽  
Vol 107 (2) ◽  
pp. 364-372 ◽  
Author(s):  
M. Pouagare ◽  
J. M. Galmes ◽  
B. Lakshminarayana

The three-dimensional turbulent boundary layer developing on a rotor blade of an axial flow compressor was measured using a minature “x” configuration hot-wire probe. The measurements were carried out at nine radial locations on both surfaces of the blade at various chordwise locations. The data derived includes streamwise and radial mean velocities and turbulence intensities. The validity of conventional velocity profiles such as the “power law profile” for the streamwise profile, and Mager and Eichelbrenner’s for the radial profile, is examined. A modification to Mager’s crossflow profile is proposed. Away from the blade tip, the streamwise component of the blade boundary layer seems to be mainly influenced by the streamwise pressure gradient. Near the tip of the blade, the behavior of the blade boundary layer is affected by the tip leakage flow and the annulus wall boundary layer. The “tangential blockage” due to the blade boundary layer is derived from the data. The profile losses are found to be less than that of an equivalent cascade, except in the tip region of the blade.


Author(s):  
Song Yan ◽  
Wuli Chu ◽  
Yu Li ◽  
YuChen Dai

The change of the blade tip clearance size has an important impact on the performance of the compressor. Considering that the performance curve of the compressor is often limited by surge and stall boundaries, this paper used the numerical simulation method to investigate the influence mechanism of the blade tip clearance size change on the stall margin of transonic axial flow compressor rotor. By mathematically decomposing the calculation formula of the stall margin of rotor, the approximate calculation formula of the change of rotor’s stall margin was obtained. Then, the detailed quantitative analysis of the factors that affect the rotor’s stall margin was carried out, the influence weights of various factors on the rotor’s stall margin was also obtained. Finally, the physical mechanism of the change of the rotor’s performance parameters was obtained by the analysis of rotor tip flow field after the blade tip clearance size change.


Author(s):  
I. G. Nikolaou ◽  
K. C. Giannakoglou ◽  
K. D. Papailiou

A three-dimensional space marching code is used for the numerical modelling of the flow in an isolated axial flow compressor rotor. The rotor is analyzed at four operating points, up to near stall conditions. Numerical results are first validated versus available experimental data and then further exploited in order to illuminate flow patterns in the inter-blade region. The tip leakage impact on the main passage flow and losses level as well as the effect of blade loading on the hub corner stall extent and the radial displacement of the flow are fully detailed. In order to account for the rotor geometry, the modifications performed in an existing software are mainly concerned with the accurate modelling of the clearance which is formed above the curved blade tip; for this purpose, a local H-type mesh is embedded to the main passage grid.


Author(s):  
Hiroaki Kikuta ◽  
Ken-ichiro Iwakiri ◽  
Masato Furukawa ◽  
Kazutoyo Yamada ◽  
Satoshi Gunjishima ◽  
...  

The unsteady behaviors and three-dimensional flow structure of the spike-type stall inception in an axial flow compressor rotor have been investigated by experimental and numerical analyses. In order to capture the transient phenomena of spike-type stall inception experimentally, “SFMT (Simultaneous Field Measurement Technique)”, by which instantaneous pressure distributions on the casing wall were acquired, was developed. By applying this technique, the unsteady flow pattern on the casing wall was extracted for each phase of development process of the stall inception. The details of three-dimensional flow structure in the stall inception process were revealed by the numerical analysis using a detached-eddy simulation (DES). At the stall inception, the characteristic patterns of the casing wall pressure distributions are observed in the experimental results: the low pressure regions moving in the circumferential direction and the variations of the low pressure regions at the leading edge. Considering the results of DES, these patterns are made by the vortices fragmented from the deformed tip leakage vortex or the tornado-type separation vortex and also are made by the tornado-type separation vortex itself, as well. The vortical flow structures have been elucidated. These vortices actually result from the leading edge separation at the blade tip. Therefore, it has been found that spike-type stall inception is dominated by the leading edge separation at the rotor blade tip.


1995 ◽  
Vol 117 (3) ◽  
pp. 336-347 ◽  
Author(s):  
B. Lakshminarayana ◽  
M. Zaccaria ◽  
B. Marathe

Detailed measurements of the flow field in the tip region of an axial flow compressor rotor were carried out using a rotating five-hole probe. The axial, tangential, and radial components of relative velocity, as well as the static and stagnation pressures, were obtained at two axial locations, one at the rotor trailing edge, the other downstream of the rotor. The measurements were taken up to about 26 percent of the blade span from the blade tip. The data are interpreted to understand the complex nature of the flow in the tip region, which involves the interaction of the tip leakage flow, the annulus wall boundary layer and the blade wake. The experimental data show that the leakage jet does not roll up into a vortex. The leakage jet exiting from the tip gap is of high velocity and mixes quickly with the mainstream, producing intense shearing and flow separation. There are substantial differences in the structure of tip clearance observed in cascades and rotors.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6143
Author(s):  
Xiaoxiong Wu ◽  
Bo Liu ◽  
Botao Zhang ◽  
Xiaochen Mao

Numerical simulations have been performed to study the effect of the circumferential single-grooved casing treatment (CT) at multiple locations on the tip-flow stability and the corresponding control mechanism at three tip-clearance-size (TCS) schemes in a transonic axial flow compressor rotor. The results show that the CT is more efficient when its groove is located from 10% to 40% tip axial chord, and G2 (located at near 20% tip axial chord) is the best CT scheme in terms of stall-margin improvement for the three TCS schemes. For effective CTs, the tip-leakage-flow (TLF) intensity, entropy generation and tip-flow blockage are reduced, which makes the interface between TLF and mainstream move downstream. A quantitative analysis of the relative inlet flow angle indicates that the reduction of flow incidence angle is not necessary to improve the flow stability for this transonic rotor. The control mechanism may be different for different TCS schemes due to the distinction of the stall inception process. For a better application of CT, the blade tip profile should be further modified by using an optimization method to adjust the shock position and strength during the design of a more efficient CT.


Sign in / Sign up

Export Citation Format

Share Document