scholarly journals Numerical investigation on diesel combustion and emissions with a standard combustion model and detailed chemistry

2015 ◽  
Vol 162 (3) ◽  
pp. 19-33
Author(s):  
Rafał Pyszczek ◽  
Carsten Schmalhorst ◽  
Andrzej Teodorczyk

The aim of this study was to determine possibilities of the soot and NOx emissions reduction from an existing heavy-duty compression-ignition (CI) engine based only on in-cylinder techniques. To that end numerical simulations of such processes as a multiphase fuel flow through injector nozzles, a liquid fuel jet breakup and evaporation, combustion and emissions formation were performed in AVL Fire 3D CFD software. The combustion process was calculated with the ECFM-3Z model and with the detailed n-heptane oxidation scheme that consisted of 76 species and 349 reactions. Both approaches of combustion modeling were validated against experimental data from the existing engine working under 75% and 100% loads. As for the reduction of the NOx emission an introduction of exhaust gas recirculation (EGR) was investigated. As for the soot concentration reduction such measures as an increased rail pressure, application of a post-injection and an increased injector nozzles conicity were investigated. Finally the ECFM-3Z model with emissions models, as well as the n-heptane mechanism predicted that it is possible to reach specified emissions limits with application of EGR, post-injection and increased nozzles conicity.

Author(s):  
Pierre Q. Gauthier

The detailed modeling of the turbulence-chemistry interactions occurring in industrial flames has always been the leading challenge in combustion Computational Fluid Dynamics (CFD). The wide range of flame types found in Industrial Gas Turbine Combustion systems has exacerbated these difficulties greatly, since the combustion modeling approach must be able to predict the flames behavior from regions of fast chemistry, where turbulence has no significant impact on the reactions, to regions where turbulence effects play a significant role within the flame. One of these combustion models, that is being used more and more in industry today, is the Flamelet Generated Manifold (FGM) model, in which the flame properties are parametrized and tabulated based on mixture fraction and flame progress variables. This paper compares the results obtained using an FGM model, with a GRI-3.0 methane-air chemistry mechanism, against the more traditional Industrial work-horse, Finite-Rate Eddy Dissipation Model (FREDM), with a global 2-step Westbrook and Dryer methane-air mechanism. Both models were used to predict the temperature distributions, as well as emissions (NOx and CO) for a conventional, non-premixed, Industrial RB211 combustion system. The object of this work is to: (i) identify any significant differences in the predictive capabilities of each model and (ii) discuss the strengths and weakness of both approaches.


Author(s):  
V Pirouzpanah ◽  
R Khoshbakhti Saray

Dual-fuel engines at part loads inevitably suffer from lower thermal efficiency and higher carbon monoxide and unburned fuel emission. The present work was carried out to investigate the combustion characteristics of a dual-fuel (diesel-gas) engine at part loads, using a single-zone combustion model with detailed chemical kinetics for combustion of natural gas fuel. The authors have developed software in which the pilot fuel is considered as a subsidiary zone and a heat source derived from two superimposedWiebe combustion functions to account for its contribution to ignition of the gaseous fuel and the rest of the total released energy. The chemical kinetics mechanism consists of 112 reactions with 34 species. This quasi-two-zone combustion model is able to establish the development of the combustion process with time and the associated important operating parameters, such as pressure, temperature, heat release rate (HRR), and species concentration. Therefore, this paper describes an attempt to investigate the combustion phenomenon at part loads and using hot exhaust gas recirculation (EGR) to improve the above-mentioned drawbacks and problems. By employing this technique, it is found that lower percentages of EGR and allowance for its thermal and radical effects have a positive influence on performance and emission parameters of dual-fuel engines at part loads. Predicted values show good agreement with corresponding experimental values under special engine operating conditions (quarter-load, 1400 r/min). Implications are discussed in detail.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Hai-Wen Ge ◽  
Harmit Juneja ◽  
Yu Shi ◽  
Shiyou Yang ◽  
Rolf D. Reitz

An efficient multigrid (MG) model was implemented for spark-ignited (SI) engine combustion modeling using detailed chemistry. The model is designed to be coupled with a level-set-G-equation model for flame propagation (GAMUT combustion model) for highly efficient engine simulation. The model was explored for a gasoline direct-injection SI engine with knocking combustion. The numerical results using the MG model were compared with the results of the original GAMUT combustion model. A simpler one-zone MG model was found to be unable to reproduce the results of the original GAMUT model. However, a two-zone MG model, which treats the burned and unburned regions separately, was found to provide much better accuracy and efficiency than the one-zone MG model. Without loss in accuracy, an order of magnitude speedup was achieved in terms of CPU and wall times. To reproduce the results of the original GAMUT combustion model, either a low searching level or a procedure to exclude high-temperature computational cells from the grouping should be applied to the unburned region, which was found to be more sensitive to the combustion model details.


Author(s):  
Tanaji M. Dabade ◽  
Xianchang Li ◽  
Daniel Chen ◽  
Helen Lou ◽  
Christopher Martin ◽  
...  

Material processing furnaces are the key component of the manufacturing industries. The burners used in these furnaces require precise control over the flame structure such as flame shape, height, and width. This study mainly focused on the simulation of the flame structure with Computational Fluid Dynamics (CFD) approach. ANSYS Fluent 13.0 was used to predict the flame characteristics in an enclosed cylinder. Non-premixed combustion model was applied to this combustion phenomenon. To control the flame structure, a micro jet at the centre of the burner is introduced. The effect on flame parameters with varying flow rates of micro jet, fuel jet and co-flow jet is examined. This study confirms the experimental study by Sinha et al. [1], which concluded that an air micro jet at the center of a non-premixed flame can control the flame height and luminosity. Moreover, this paper visualizes the thermo chemistry and transport phenomenon of non-premixed combustion process. Emissions from the combustion are monitored for different boundary conditions. This study shows that innovative strategies can be developed for the precise control over the different types of flames with the help of numerical modeling.


Author(s):  
Michael Jud ◽  
Christoph Wieland ◽  
Georg Fink ◽  
Thomas Sattelmayer

An efficient computational fluid dynamics model for predicting high pressure dual-fuel combustion is one of the most essential steps in order to improve the concept, to reduce the number of experiments and to make the development process more coste-efficient. For Diesel and natural gas such a model developed by the authors is first used to analyze the combustion process with respect to turbulence chemistry interaction and to clarify the question whether the combustion process is limited by chemistry or the mixing process. On the basis of these findings a reduced reaction mechanism is developed in order to save up to 35% of computing time. The prediction capability of the modified combustion model is tested for different gas injection timings representing different degrees of premixing before ignition. Compared to experimental results from a rapid compression expansion machine, the shape of heat release rate, the ignition timing of the gas jet and the burnout are well predicted. Finally, misfiring observed at different geometric configurations in the experiment are analyzed with the model. It is identified that in these geometric configurations at low temperature levels the gas jet covers the preferred ignition region of the diesel jet. Since the model is based on the detailed chemistry approach, it can in future also be used for other fuel combinations or for predicting emissions.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1036 ◽  
Author(s):  
Xinying Xu ◽  
Qi Chen ◽  
Mifeng Ren ◽  
Lan Cheng ◽  
Jun Xie

Increasing the combustion efficiency of power plant boilers and reducing pollutant emissions are important for energy conservation and environmental protection. The power plant boiler combustion process is a complex multi-input/multi-output system, with a high degree of nonlinearity and strong coupling characteristics. It is necessary to optimize the boiler combustion model by means of artificial intelligence methods. However, the traditional intelligent algorithms cannot deal effectively with the massive and high dimensional power station data. In this paper, a distributed combustion optimization method for boilers is proposed. The MapReduce programming framework is used to parallelize the proposed algorithm model and improve its ability to deal with big data. An improved distributed extreme learning machine is used to establish the combustion system model aiming at boiler combustion efficiency and NOx emission. The distributed particle swarm optimization algorithm based on MapReduce is used to optimize the input parameters of boiler combustion model, and weighted coefficient method is used to solve the multi-objective optimization problem (boiler combustion efficiency and NOx emissions). According to the experimental analysis, the results show that the method can optimize the boiler combustion efficiency and NOx emissions by combining different weight coefficients as needed.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3717
Author(s):  
Nikita Zuev ◽  
Andrey Kozlov ◽  
Alexey Terenchenko ◽  
Kirill Karpukhin ◽  
Ulugbek Azimov

Using biodiesel fuel in diesel engines for heavy-duty transport is important to meet the stringent emission regulations. Biodiesel is an oxygenated fuel and its physical and chemical properties are close to diesel fuel, yet there is still a need to analyze and tune the fuel injection parameters to optimize the combustion process and emissions. A four-injections strategy was used: two pilots, one main and one post injection. A highly advanced SOI decreases the NOx and the compression work but makes the combustion process less efficient. The pilot injection fuel mass influences the combustion only at injection close to the top dead center during the compression stroke. The post injection has no influence on the compression work, only on the emissions and the indicated work. An optimal injection strategy was found to be: pilot SOI 19.2 CAD BTDC, pilot injection fuel mass 25.4%; main SOI 3.7 CAD BTDC, main injection fuel mass 67.3% mg; post SOI 2 CAD ATDC, post injection fuel mass 7.3% (the injection fuel mass is given as a percentage of the total fuel mass injected). This allows the indicated work near the base case level to be maintained, the pressure rise rate to decrease by 20% and NOx emissions to decrease by 10%, but leads to a 5% increase in PM emissions.


Author(s):  
Raouf Mobasheri ◽  
Zhijun Peng

High-Speed Direct Injection (HSDI) diesel engines are increasingly used in automotive applications due to superior fuel economy. An advanced CFD simulation has been carried out to analyze the effect of injection timing on combustion process and emission characteristics in a four valves 2.0L Ford diesel engine. The calculation was performed from intake valve closing (IVC) to exhaust valve opening (EVO) at constant speed of 1600 rpm. Since the work was concentrated on the spray injection, mixture formation and combustion process, only a 60° sector mesh was employed for the calculations. For combustion modeling, an improved version of the Coherent Flame Model (ECFM-3Z) has been applied accompanied with advanced models for emission modeling. The results of simulation were compared against experimental data. Good agreement of calculated and measured in-cylinder pressure trace and pollutant formation trends were observed for all investigated operating points. In addition, the results showed that the current CFD model can be applied as a beneficial tool for analyzing the parameters of the diesel combustion under HSDI operating condition.


2021 ◽  
Vol 11 (4) ◽  
pp. 1441
Author(s):  
Farhad Salek ◽  
Meisam Babaie ◽  
Amin Shakeri ◽  
Seyed Vahid Hosseini ◽  
Timothy Bodisco ◽  
...  

This study aims to investigate the effect of the port injection of ammonia on performance, knock and NOx emission across a range of engine speeds in a gasoline/ethanol dual-fuel engine. An experimentally validated numerical model of a naturally aspirated spark-ignition (SI) engine was developed in AVL BOOST for the purpose of this investigation. The vibe two zone combustion model, which is widely used for the mathematical modeling of spark-ignition engines is employed for the numerical analysis of the combustion process. A significant reduction of ~50% in NOx emissions was observed across the engine speed range. However, the port injection of ammonia imposed some negative impacts on engine equivalent BSFC, CO and HC emissions, increasing these parameters by 3%, 30% and 21%, respectively, at the 10% ammonia injection ratio. Additionally, the minimum octane number of primary fuel required to prevent knock was reduced by up to 3.6% by adding ammonia between 5 and 10%. All in all, the injection of ammonia inside a bio-fueled engine could make it robust and produce less NOx, while having some undesirable effects on BSFC, CO and HC emissions.


2001 ◽  
Author(s):  
Qing Jiang ◽  
Chao Zhang

Abstract A study of the nitrogen oxides (NOx) emission and combustion process in a gas-fired regenerative, high temperature, low emission industrial furnace has been carried out numerically. The effect of two additives, methanol (CH3OH) and hydrogen peroxide (H2O2), to fuel on the NOx emission has been studied. A moment closure method with the assumed β probability density function (PDF) for mixture fraction is used in the present work to model the turbulent non-premixed combustion process in the furnace. The combustion model is based on the assumption of instantaneous full chemical equilibrium. The results showed that CH3OH is effective in the reduction of NOx in a regenerative industrial furnace. However, H2O2 has no significant effect on the NOx emission.


Sign in / Sign up

Export Citation Format

Share Document