Design of a Variable Geometry Axial-Inflow Turbine Turbocharger Equipped With a Diffuser-Collector System

Author(s):  
Apostolos Pesyridis ◽  
Alessandro Cappiello ◽  
Raffaele Tuccillo

The fluid-dynamic design of a bespoke variable geometry axial inflow turbine, equipped with a diffuser-collector system for turbocharging applications, was numerically investigated with the purpose of replacing the radial flow turbine in a commercial turbocharger. The paper aims to investigate the suitability of axial turbines for turbocharging applications in the automotive field. The turbine outflow is linked to a diffuser-collector system in order to obtain a kinetic energy recovery together with a correct flow direction to the discharge system. Additionally, once completed the turbine design, the operating maps for three different stator positions were numerically obtained. Finally, a turbocharger–engine matching model allowed comparison of the new axial and conventional radial flow turbine in terms of turbine power and efficiency, compressor pressure ratio, engine torque and BSFC.

Author(s):  
Aman M. I. Mamat ◽  
Muhamad H. Padzillah ◽  
Alessandro Romagnoli ◽  
Ricardo F. Martinez-Botas

In order to enhance energy extraction from the exhaust gases of a highly boosted downsized engine, an electric turbo-compounding unit can be fitted downstream of the main turbocharger. The extra energy made available to the vehicle can be used to feed batteries which can supply energy to electric units like superchargers, start and stop systems or other electric units. The current research focuses on the design of a turbine for a 1.0 litre gasoline engine which aims to reduce the CO2 emissions of a “cost-effective, ultra-efficient gasoline engine in small and large family car segment”. A 1-D engine simulation showed that a 3% improvement in brake specific fuel consumption (BSFC) can be expected with the use of an electric turbocompounding. However, the low pressure available to the exhaust gases expanded in the main turbocharger and the constant rotational speed required by the electric motor, motivated to design a new turbine which gives a high performance at lower pressures. Accordingly, a new turbine design was developed to recover energy of discharged exhaust gases at low pressure ratios (1.05–1.3) and to drive a small electric generator with a maximum power output of 1.0 kW. The design operating conditions were fixed at 50,000 rpm with a pressure ratio of 1.1. Commercially available turbines are not suitable for this purpose due to the very low efficiencies experienced when operating in these pressure ranges. The low pressure turbine design was carried out through a conventional non-dimensional mixed-flow turbine design method. The design procedure started with the establishment of 2-D configurations and was followed by the 3-D radial fibre blade design. A vane-less turbine volute was designed based on the knowledge of the rotor inlet flow direction and the magnitude of the absolute speed. The overall dimensions of the volute design were defined by the area-to-radius ratios at each respective volute circumferential azimuth angle. Subsequently, a comprehensive steady-state turbine performance analysis was performed by mean of Computational Fluid Dynamics (CFD) and it was found that a maximum of 76% of total-static efficiency ηt-s can be achieved at design speed.


2021 ◽  
Vol 11 (6) ◽  
pp. 2619
Author(s):  
Carlos Rio-Cano ◽  
Navid M. Tousi ◽  
Josep M. Bergada ◽  
Angel Comas

The suspensions used in heavy vehicles often consist of several oil and two gas chambers. In order to perform an analytical study of the mass flow transferred between two gas chambers separated by a nozzle, and when considering the gas as compressible and real, it is usually needed to determine the discharge coefficient of the nozzle. The nozzle configuration analyzed in the present study consists of a T shape, and it is used to separate two nitrogen chambers employed in heavy vehicle suspensions. In the present study, under compressible dynamic real flow conditions and at operating pressures, discharge coefficients were determined based on experimental data. A test rig was constructed for this purpose, and air was used as working fluid. The study clarifies that discharge coefficients for the T shape nozzle studied not only depend on the pressure gradient between chambers but also on the flow direction. Computational Fluid Dynamic (CFD) simulations, using air as working fluid and when flowing in both nozzle directions, were undertaken, as well, and the fluid was considered as compressible and ideal. The CFD results deeply helped in understanding why the dynamic discharge coefficients were dependent on both the pressure ratio and flow direction, clarifying at which nozzle location, and for how long, chocked flow was to be expected. Experimentally-based results were compared with the CFD ones, validating both the experimental procedure and numerical methodologies presented. The information gathered in the present study is aimed to be used to mathematically characterize the dynamic performance of a real suspension.


Author(s):  
Muhammad Umar ◽  
Charles A. Garris

The “Pressure exchange” is a novel concept in turbomachinery whereby two fluids, at different energy levels, come in direct contact with each other to transfer energy and momentum between them through non-steady interface pressure forces. The rotating jets of the high pressure primary fluid, often referred to as pseudoblades, resemble solid blades on the impeller of a conventional turbomachine. The low pressure secondary fluid, ahead of the pseudoblades, is pressurized by the action of interface pressure forces. The current paper seeks to provide an insight into the complex flow phenomena occurring inside the radial flow pressure exchange ejector. This research presents the results of the first successful numerical simulation to explore the effects of primary to secondary total pressure ratio and primary to secondary total temperature ratio on the performance of a radial flow pressure exchange ejector.


2020 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Emmanuel O. Osigwe ◽  
Arnold Gad-Briggs ◽  
Theoklis Nikolaidis

When selecting a design for an unmanned aerial vehicle, the choice of the propulsion system is vital in terms of mission requirements, sustainability, usability, noise, controllability, reliability and technology readiness level (TRL). This study analyses the various propulsion systems used in unmanned aerial vehicles (UAVs), paying particular focus on the closed-cycle propulsion systems. The study also investigates the feasibility of using helium closed-cycle gas turbines for UAV propulsion, highlighting the merits and demerits of helium closed-cycle gas turbines. Some of the advantages mentioned include high payload, low noise and high altitude mission ability; while the major drawbacks include a heat sink, nuclear hazard radiation and the shield weight. A preliminary assessment of the cycle showed that a pressure ratio of 4, turbine entry temperature (TET) of 800 °C and mass flow of 50 kg/s could be used to achieve a lightweight helium closed-cycle gas turbine design for UAV mission considering component design constraints.


AIChE Journal ◽  
1981 ◽  
Vol 27 (3) ◽  
pp. 442-450 ◽  
Author(s):  
Vemuri Balakotaiah ◽  
Dan Luss

2021 ◽  
Author(s):  
James Braun ◽  
Guillermo Paniagua ◽  
Donald Ferguson

Abstract Cycle benefits of rotating detonation engines show up to five percentage points of efficiency gain for low-pressure ratio engines. An optimal integration between the combustor and the turbine needs to be guaranteed to realize this potential gain. The rotating detonation combustor (RDC) exhausts transonic flow with shocks rotating at frequencies ranging from a few to tens of kilohertz depending on the number of present waves. Hence, the turbine design requires precise knowledge of the fluctuations and losses downstream of the combustor. This paper focuses on the quantification of fluctuations and losses for accelerating and diffusing passages. The analysis of the combustor is performed via reactive unsteady Reynolds Averaged Navier-Stokes (URANS) simulations. The unsteady RANS equations are solved via CFD++ from Metacomp with a one-step reaction mechanism for an H2-air mixture. The resolving of the boundary layer is achieved with a structured mesh of around 36 million cells. Inlet pressure of 10 bar and two different back pressures are applied to the combustor to model the interconnection with downstream turbines. Finally, we present and assess a methodology to reduce the computational time to model these passages ten times.


Author(s):  
Yoshiaki Sakamoto ◽  
Hisao Izuchi ◽  
Naoko Suzuki

Reaction force of safety valves acting to the piping system is one of key factors for the piping system design around the safety valves. In case of open discharge system, it is well known that a large reaction force acts to the piping corresponding to the fluid momentum force at the atmospheric discharge. On the other hand, reaction forces for closed discharge system may be relatively small since the forces acting to the adjacent two points with flow direction change such as elbows and tees are balanced within very short period. However, large reaction forces may act as a result of unsteady flow just after the initial activation of the safety valve. API RP520 mentioned that a complex time history analysis of the piping system around the safety valves may be required to obtain the transient forces. This paper explains a method of a comprehensive dynamic simulation of piping system around safety valves taking interaction among the valve disc motion, the fluid transient for compressible flow and the piping structural dynamics into account. The simulation results have good agreement with the experimental data. The effectiveness of this method is confirmed throughout an application to actual piping system around safety valves.


2018 ◽  
Vol 42 (4) ◽  
pp. 404-415
Author(s):  
H. Abu-Thuraia ◽  
C. Aygun ◽  
M. Paraschivoiu ◽  
M.A. Allard

Advances in wind power and tidal power have matured considerably to offer clean and sustainable energy alternatives. Nevertheless, distributed small-scale energy production from wind in urban areas has been disappointing because of very low efficiencies of the turbines. A novel wind turbine design — a seven-bladed Savonius vertical-axis wind turbine (VAWT) that is horizontally oriented inside a diffuser shroud and mounted on top of a building — has been shown to overcome the drawback of low efficiency. The objective this study was to analyze the performance of this novel wind turbine design for different wind directions and for different guide vanes placed at the entrance of the diffuser shroud. The flow field over the turbine and guide vanes was analyzed using computational fluid dynamics (CFD) on a 3D grid for multiple tip-speed ratios (TSRs). Four wind directions and three guide-vane angles were analyzed. The wind-direction analysis indicates that the power coefficient decreases to about half when the wind is oriented at 45° to the main axis of the turbine. The analysis of the guide vanes indicates a maximum power coefficient of 0.33 at a vane angle of 55°.


Author(s):  
Calogero Avola ◽  
Alberto Racca ◽  
Angelo Montanino ◽  
Carnell E. Williams ◽  
Alfonso Renella ◽  
...  

Abstract Maximization of the turbocharger efficiency is fundamental to the reduction of the internal combustion engine back-pressure. Specifically, in turbochargers with a variable geometry turbine (VGT), energy losses can be induced by the aerodynamic profile of both the nozzle vanes and the turbine blades. Although appropriate considerations on material limits and structural performance of the turbine wheel are monitored in the design and aero-mechanical optimization phases, in these stages, fatigue phenomena might be ignored. Fatigue occurrence in VGT wheels can be categorized into low and high cycle behaviors. The former would be induced by the change in turbine rotational speed in time, while the latter would be caused by the interaction between the aerodynamic excitation and blades resonating modes. In this paper, an optimized turbine stage, including unique nozzle vanes design and turbine blades profile, has been assessed for high cycle fatigue (HCF) behavior. To estimate the robustness of the turbine wheel under several powertrain operations, a procedure to evaluate HCF behavior has been developed. Specifically, the HCF procedure tries to identify the possible resonances between the turbine blades frequency of vibrations and the excitation order induced by the number of variable vanes. Moreover, the method evaluates the turbine design robustness by checking the stress levels in the component against the limits imposed by the Goodman law of the material selected for the turbine wheel. In conclusion, both the VGT design and the HCF approach are experimentally assessed.


Sign in / Sign up

Export Citation Format

Share Document