Dynamic Modelling of Blades Based on a Novel Curved Thin Walled Beam Theory

Author(s):  
Juan C. Jauregui ◽  
Diego Cardenas ◽  
Hugo Elizalde ◽  
Oliver Probst

There are several Thin-Walled Beam models for straight beams, but few TWB models consider beams with arbitrary curvatures. Although, a curved beam can be modelled using finite elements, the number of degrees of freedom is too large and a nonlinear dynamic solution is very cumbersome, if not impossible. In this work, a general description of arbitrary three-dimensional curves, based on the Frenet-Serret field frame, is applied to determine the dynamic stresses in wing turbines blades. The dynamic model is developed using the Isogeometric Analysis (IGA) and the in plane and out-of-plane curvature’s gradients are found in an Euler-type formulation, allowing the treatment of cases with highly-curved geometry. An Isogeometrical (IGA) formulation relies on a linear combination of Non-Uniform Rational B-Splines (NURBS) to represent not just the model’s geometry, a standard practice in most Computer-Aided Design (CAD) platforms, but also the unknown solution field of each sought variable. For the unified model hitherto described, these variables are represented by a NURBS curve.

2015 ◽  
Vol 8 (2) ◽  
Author(s):  
Andrew Johnson ◽  
Xianwen Kong ◽  
James Ritchie

The determination of workspace is an essential step in the development of parallel manipulators. By extending the virtual-chain (VC) approach to the type synthesis of parallel manipulators, this technical brief proposes a VC approach to the workspace analysis of parallel manipulators. This method is first outlined before being illustrated by the production of a three-dimensional (3D) computer-aided-design (CAD) model of a 3-RPS parallel manipulator and evaluating it for the workspace of the manipulator. Here, R, P and S denote revolute, prismatic and spherical joints respectively. The VC represents the motion capability of moving platform of a manipulator and is shown to be very useful in the production of a graphical representation of the workspace. Using this approach, the link interferences and certain transmission indices can be easily taken into consideration in determining the workspace of a parallel manipulator.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3325
Author(s):  
Valery Ochkov ◽  
Inna Vasileva ◽  
Ekaterina Borovinskaya ◽  
Wladimir Reschetilowski

This paper considers an approach towards the building of new classes of symmetric closed curves with two or more focal points, which can be obtained by generalizing classical definitions of the ellipse, Cassini, and Cayley ovals. A universal numerical method for creating such curves in mathematical packages is introduced. Specific aspects of the provided numerical data in computer-aided design systems with B-splines for three-dimensional modeling are considered. The applicability of the method is demonstrated, as well as the possibility to provide high smoothness of the curvature profile at the specified accuracy of modeling.


2019 ◽  
Vol 11 (6) ◽  
Author(s):  
Vishal Ramadoss ◽  
Dimiter Zlatanov ◽  
Xilun Ding ◽  
Matteo Zoppi ◽  
Shengnan Lyu

Abstract There has been an increasing interest in design and construction of deployable mechanisms (DMs) with multiple degrees of freedom (DOFs). This paper summarizes a family of deployable mechanisms that approximates a series of curves and surfaces using the polygonal approximation technique. These mechanisms are obtained by linking the two- and three-dimensional deployable units, which are constitutive of Sarrus and scissor linkages. Multiple unit mechanisms with varying sizes are assembled and alter their shape within a different family of parameterized curves and surfaces. A systematic methodology for polygonal approximation method is presented. Quadratic, semi-cubic, cubic, quartic and sextic curve boundaries, and quadric surfaces are approximated and controlled. Computer-aided design (CAD) models and kinematic simulations elucidate the mechanism’s ability to approximate a set of curves and surfaces.


1996 ◽  
Vol 40 (04) ◽  
pp. 351-367 ◽  
Author(s):  
Kostis G. Pigounakis ◽  
Nickolas S. Sapidis ◽  
Panagiotis D. Kaklis

Three-dimensional curves are playing an increasing role in ship-hull modeling and many other areas of computer-aided design (CAD). The problem of evaluating and improving the fairness of such a curve is considered and three solutions (algorithms) are proposed representing all major methodologies currently pursued by CAD researchers: local fairing by knot removal, and local/global fairing based on "energy" minimization. The performance of the algorithms is studied for both cubic and quintic B-splines using realistic test cases. Finally, a comparison with existing techniques is presented and some visualization tools for spatial-curve fairing are briefly discussed.


2020 ◽  
Vol 64 (5) ◽  
pp. 50405-1-50405-5
Author(s):  
Young-Woo Park ◽  
Myounggyu Noh

Abstract Recently, the three-dimensional (3D) printing technique has attracted much attention for creating objects of arbitrary shape and manufacturing. For the first time, in this work, we present the fabrication of an inkjet printed low-cost 3D temperature sensor on a 3D-shaped thermoplastic substrate suitable for packaging, flexible electronics, and other printed applications. The design, fabrication, and testing of a 3D printed temperature sensor are presented. The sensor pattern is designed using a computer-aided design program and fabricated by drop-on-demand inkjet printing using a magnetostrictive inkjet printhead at room temperature. The sensor pattern is printed using commercially available conductive silver nanoparticle ink. A moving speed of 90 mm/min is chosen to print the sensor pattern. The inkjet printed temperature sensor is demonstrated, and it is characterized by good electrical properties, exhibiting good sensitivity and linearity. The results indicate that 3D inkjet printing technology may have great potential for applications in sensor fabrication.


2021 ◽  
Vol 11 (4) ◽  
pp. 145
Author(s):  
Nenad Bojcetic ◽  
Filip Valjak ◽  
Dragan Zezelj ◽  
Tomislav Martinec

The article describes an attempt to address the automatized evaluation of student three-dimensional (3D) computer-aided design (CAD) models. The driving idea was conceptualized under the restraints of the COVID pandemic, driven by the problem of evaluating a large number of student 3D CAD models. The described computer solution can be implemented using any CAD computer application that supports customization. Test cases showed that the proposed solution was valid and could be used to evaluate many students’ 3D CAD models. The computer solution can also be used to help students to better understand how to create a 3D CAD model, thereby complying with the requirements of particular teachers.


2020 ◽  
Vol 174 ◽  
pp. 01048
Author(s):  
Elena Kassikhina ◽  
Vladimir Pershin ◽  
Nina Rusakova

The existing structures of the steel sinking headgear and permanent headframe do not meet the requirements of resource saving (metal consumption and manpower input at installation), and the present methods of the headframe designing do not fully reflect recent possibilities of applying of the advanced information technologies. Technical level of the modern software makes it possible for designers to set up multiple numerical experiments to create a computer simulation that allows solving the problem without field and laboratory experiments, and therefore without special costs. In this regard, a mathematical simulation has been developed and based on it, software to select cross-sections of multi- purpose steel headframe elements and to calculate proper weight of its metal structures depending on the characteristics and hoisting equipment. A headframe drawing is displayed, as the results of the software work, including list of elements, obtained optimal hoisting equipment in accordance with the initial data. The software allows speeding up graphic work and reducing manpower input on calculations and paper work. The software allows developing a three-dimensional image of the structure and its functional blocks, based on the obtained initial parameters, as well as developing control software for units with numerical control (NC) in order to manufacture multi-purpose headframes.


2015 ◽  
Vol 35 (3) ◽  
pp. 269-280 ◽  
Author(s):  
Hu Qiao ◽  
Rong Mo ◽  
Ying Xiang

Purpose – The purpose of this paper is to establish an adaptive assembly, to realize the adaptive changing of the models and to improve the flexibility and reliability of assembly change. For a three-dimensional (3D) computer-aided design (CAD) assembly in a changing process, there are two practical problems. One is delivering parameters’ information not smoothly. The other one is to easily destroy an assembly structure. Design/methodology/approach – The paper establishes associated parameters design structure matrix of related parts, and predicts possible propagation paths of the parameters. Based on the predicted path, structured storage is made for the affected parameters, tolerance range and the calculation relations. The study combines structured path information and all constrained assemblies to build the adaptive assembly, proposes an adaptive change algorithm for assembly changing and discusses the extendibility of the adaptive assembly. Findings – The approach would improve the flexibility and reliability of assembly change and be applied to different CAD platform. Practical implications – The examples illustrate the construction and adaptive behavior of the assembly and verify the feasibility and reasonability of the adaptive assembly in practical application. Originality/value – The adaptive assembly model proposed in the paper is an original method to assembly change. And compared with other methods, good results have been obtained.


Sign in / Sign up

Export Citation Format

Share Document